根据文档,我可以使用 cvxopt 计算有效边界:
http://cvxopt.org/examples/book/portfolio.html
但是,我无法弄清楚如何添加约束,以便对特定资产的最大允许权重设置上限。使用 cvxopt 可以吗?
到目前为止,这是我的代码,它产生了一个没有约束的有效边界,除了我相信 b,它将权重的最大总和设置为 1。我不确定 G、h、A 和 mus 做什么,而文档没有真的不解释。mus的公式中的10**(5.0*t/N-1.0)从何而来?
from math import sqrt
from cvxopt import matrix
from cvxopt.blas import dot
from cvxopt.solvers import qp, options
# Number of assets
n = 4
# Convariance matrix
S = matrix( [[ 4e-2, 6e-3, -4e-3, 0.0 ],
[ 6e-3, 1e-2, 0.0, 0.0 ],
[-4e-3, 0.0, 2.5e-3, 0.0 ],
[ 0.0, 0.0, 0.0, 0.0 ]] )
# Expected return
pbar = matrix([.12, .10, .07, .03])
# nxn matrix of 0s
G = matrix(0.0, (n,n))
# Convert G to negative identity matrix
G[::n+1] = -1.0
# nx1 matrix of 0s
h = matrix(0.0, (n,1))
# 1xn matrix of 1s
A = matrix(1.0, (1,n))
# scalar of 1.0
b = matrix(1.0)
N = 100
mus = [ 10**(5.0*t/N-1.0) for t in range(N) ]
options['show_progress'] = False
xs = [ qp(mu*S, -pbar, G, h, A, b)['x'] for mu in mus ]
returns = [ dot(pbar,x) for x in xs ]
risks = [ sqrt(dot(x, S*x)) for x in xs ]
#Efficient frontier
plt.plot(risks, returns)