好的,我很抱歉发布一个问题然后这么快就自己回答了,但是我从犹他州立大学找到了一组不错的课程幻灯片,其中有关于使用 GDAL 打开光栅图像数据的讲座。作为记录,这是我用来打开 PRISM 气候组数据集(采用 EHdr 格式)的代码。
import gdal
def ReadBilFile(bil):
gdal.GetDriverByName('EHdr').Register()
img = gdal.Open(bil)
band = img.GetRasterBand(1)
data = band.ReadAsArray()
return data
if __name__ == '__main__':
a = ReadBilFile(r'G:\truncated\ppt\1950\PRISM_ppt_stable_4kmM2_1950_bil.bil')
print a[44, 565]
编辑 2014 年 5 月 27 日
我已经建立了上面的答案,并想在这里分享它,因为似乎缺少文档。我现在有一个具有一个主要方法的类,它将 BIL 文件作为数组读取并返回一些关键属性。
import gdal
import gdalconst
class BilFile(object):
def __init__(self, bil_file):
self.bil_file = bil_file
self.hdr_file = bil_file.split('.')[0]+'.hdr'
def get_array(self, mask=None):
self.nodatavalue, self.data = None, None
gdal.GetDriverByName('EHdr').Register()
img = gdal.Open(self.bil_file, gdalconst.GA_ReadOnly)
band = img.GetRasterBand(1)
self.nodatavalue = band.GetNoDataValue()
self.ncol = img.RasterXSize
self.nrow = img.RasterYSize
geotransform = img.GetGeoTransform()
self.originX = geotransform[0]
self.originY = geotransform[3]
self.pixelWidth = geotransform[1]
self.pixelHeight = geotransform[5]
self.data = band.ReadAsArray()
self.data = np.ma.masked_where(self.data==self.nodatavalue, self.data)
if mask is not None:
self.data = np.ma.masked_where(mask==True, self.data)
return self.nodatavalue, self.data
我使用以下函数调用这个类,其中我使用 GDAL 的 vsizip 函数直接从 zip 文件中读取 BIL 文件。
import prism
def getPrecipData(years=None):
grid_pnts = prism.getGridPointsFromTxt()
flrd_pnts = np.array(pd.read_csv(r'D:\truncated\PrismGridPointsFlrd.csv').grid_code)
mask = prism.makeGridMask(grid_pnts, grid_codes=flrd_pnts)
for year in years:
bil = r'/vsizip/G:\truncated\PRISM_ppt_stable_4kmM2_{0}_all_bil.zip\PRISM_ppt_stable_4kmM2_{0}_bil.bil'.format(year)
b = prism.BilFile(bil)
nodatavalue, data = b.get_array(mask=mask)
data *= mm_to_in
b.write_to_csv(data, 'PrismPrecip_{}.txt'.format(year))
return
# Get datasets
years = range(1950, 2011, 5)
getPrecipData(years=years)