受您的问题的启发,我决定在 Python 中实现我自己的因式分解(并找到最大的素数)版本。
我所知道的最容易实现但非常有效的因式分解算法可能是Pollard 的 Rho算法。它的运行时间最多为 ,比试除算法O(N^(1/4))
的时间快得多。O(N^(1/2))
两种算法只有在复合(非素数)数的情况下才有这些运行时间,这就是为什么应该使用素数测试来过滤掉素数(不可因数)。
我在我的代码中使用了以下算法:Fermat Primality Test ...、 Pollard's Rho Algorithm ...、 Trial Division Algorithm。在运行 Pollard 的 Rho 之前使用 Fermat 素数测试以过滤掉素数。Trial Division 被用作后备,因为 Pollard 的 Rho 在极少数情况下可能无法找到因素,尤其是对于一些小数字。
显然,在将一个数字完全分解为已排序的素因子列表后,最大的素因子将是该列表中的最后一个元素。在一般情况下(对于任何随机数),除了完全分解一个数字之外,我不知道有任何其他方法可以找出最大的素数。
作为我的代码中的一个示例,我正在分解 Pi 的前190个小数位,代码在 1 秒内分解这个数字,并显示最大的素数因子,其大小为165位(545 位)!
在线尝试!
def is_fermat_probable_prime(n, *, trials = 32):
# https://en.wikipedia.org/wiki/Fermat_primality_test
import random
if n <= 16:
return n in (2, 3, 5, 7, 11, 13)
for i in range(trials):
if pow(random.randint(2, n - 2), n - 1, n) != 1:
return False
return True
def pollard_rho_factor(N, *, trials = 16):
# https://en.wikipedia.org/wiki/Pollard%27s_rho_algorithm
import random, math
for j in range(trials):
i, stage, y, x = 0, 2, 1, random.randint(1, N - 2)
while True:
r = math.gcd(N, x - y)
if r != 1:
break
if i == stage:
y = x
stage <<= 1
x = (x * x + 1) % N
i += 1
if r != N:
return [r, N // r]
return [N] # Pollard-Rho failed
def trial_division_factor(n, *, limit = None):
# https://en.wikipedia.org/wiki/Trial_division
fs = []
while n & 1 == 0:
fs.append(2)
n >>= 1
d = 3
while d * d <= n and limit is None or d <= limit:
q, r = divmod(n, d)
if r == 0:
fs.append(d)
n = q
else:
d += 2
if n > 1:
fs.append(n)
return fs
def factor(n):
if n <= 1:
return []
if is_fermat_probable_prime(n):
return [n]
fs = trial_division_factor(n, limit = 1 << 12)
if len(fs) >= 2:
return sorted(fs[:-1] + factor(fs[-1]))
fs = pollard_rho_factor(n)
if len(fs) >= 2:
return sorted([e1 for e0 in fs for e1 in factor(e0)])
return trial_division_factor(n)
def demo():
import time, math
# http://www.math.com/tables/constants/pi.htm
# pi = 3.
# 1415926535 8979323846 2643383279 5028841971 6939937510 5820974944 5923078164 0628620899 8628034825 3421170679
# 8214808651 3282306647 0938446095 5058223172 5359408128 4811174502 8410270193 8521105559 6446229489 5493038196
# n = first 190 fractional digits of Pi
n = 1415926535_8979323846_2643383279_5028841971_6939937510_5820974944_5923078164_0628620899_8628034825_3421170679_8214808651_3282306647_0938446095_5058223172_5359408128_4811174502_8410270193_8521105559_6446229489
print('Number:', n)
tb = time.time()
fs = factor(n)
print('All Prime Factors:', fs)
print('Largest Prime Factor:', f'({math.log2(fs[-1]):.02f} bits, {len(str(fs[-1]))} digits)', fs[-1])
print('Time Elapsed:', round(time.time() - tb, 3), 'sec')
if __name__ == '__main__':
demo()
输出:
Number: 1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679821480865132823066470938446095505822317253594081284811174502841027019385211055596446229489
All Prime Factors: [3, 71, 1063541, 153422959, 332958319, 122356390229851897378935483485536580757336676443481705501726535578690975860555141829117483263572548187951860901335596150415443615382488933330968669408906073630300473]
Largest Prime Factor: (545.09 bits, 165 digits) 122356390229851897378935483485536580757336676443481705501726535578690975860555141829117483263572548187951860901335596150415443615382488933330968669408906073630300473
Time Elapsed: 0.593 sec