> lenss
xd yd zd
1 0.0000 0.0000 2.44479
2 0.0937 0.0000 2.73183
3 0.3750 0.0000 2.97785
4 0.8437 0.0000 3.18626
5 1.5000 0.0000 3.36123
6 2.3437 0.0000 3.50624
7 3.3750 0.0000 3.62511
8 4.5937 0.0000 3.72124
9 5.9999 0.0000 3.79778
10 7.5936 0.0000 3.85744
11 9.3749 0.0000 3.90241
12 11.3436 0.0000 3.93590
13 13.4998 0.0000 3.96011
14 15.8435 0.0000 3.97648
15 18.3748 0.0000 3.98236
16 21.0935 0.0000 3.99406
17 23.9997 0.0000 3.99732
18 27.0934 0.0000 3.99911
19 30.3746 0.0000 4.00004
20 33.8433 0.0000 4.00005
21 37.4995 0.0000 4.00006
22 0.0663 0.0663 3.99973
23 0.2652 0.2652 3.99988
24 0.5966 0.5966 3.99931
25 1.0606 1.0606 3.99740
26 1.6573 1.6573 3.99375
27 2.3865 2.3865 3.98732
28 3.2482 3.2482 3.97640
29 4.2426 4.2426 3.95999
30 5.3695 5.3695 3.93598
31 6.6290 6.6290 3.90258
32 8.0211 8.0211 3.85171
33 9.5458 9.5458 3.79754
34 11.2031 11.2031 3.72156
35 12.9929 12.9929 3.62538
36 14.9153 14.9153 3.50636
37 16.9703 16.9703 3.36129
38 19.1579 19.1579 3.18622
39 21.4781 21.4781 2.97802
40 23.9308 23.9308 2.73206
41 26.5162 26.5162 2.44464
> rd=sqrt(xd^2+yd^2)
> fit=nls(zd~(rd^2/R)/(1+sqrt(1-(1+k)*rd^2/R^2))+d,start=list(R=75,k=-1,d=1))
Error in numericDeriv(form[[3L]], names(ind), env) :
Missing value or an infinity produced when evaluating the model
In addition: Warning message:
In sqrt(1 - (1 + k) * rd^2/R^2) : NaNs produced
上面给出了该模型的功能。问题表明数据中有一些不准确的测量值,我需要找到它们。我将首先拟合模型并计算出每次测量中的每个残差。