6

我有一个 N*N 矩阵(N=2 到 10000),其范围可能从 0 到 1000。如何找到包含相同数字的最大(矩形)子矩阵?

例子:

     1  2  3  4  5
    -- -- -- -- --
1 | 10  9  9  9 80
2 |  5  9  9  9 10
3 | 85 86 54 45 45
4 | 15 21  5  1  0
5 |  5  6 88 11 10

输出应该是子矩阵的区域,后跟其左上角元素的从 1 开始的坐标。例如,这是因为在第 2 列第 1 行(6, 2, 1)有六个s。9

4

2 回答 2

1

这是一个进展中的工作

我想过这个问题,我想我可能有一个O(w*h)算法。

这个想法是这样的:

  • 对于任何计算从 开始(i,j)的列中具有相同值的最大单元格数。将此值存储为.j(i,j)heights[i][j]
  • 创建一个子矩阵的空向量(一个 lifo)
  • 对于所有行:我
    • 对于所有列:j
      • 弹出所有子矩阵height > heights[i][j]。因为高度 > 的子矩阵heights[i][j]不能在这个单元格上继续
      • 推一个由(i,j,heights[i][j])wherej是我们可以拟合高度子矩阵的最远坐标定义的子矩阵:heights[i][j]
      • 更新当前最大子矩阵

棘手的部分在内部循环中。我使用类似于最大子窗口算法的方法来确保O(1)每个单元格的平均值。

我将尝试制定一个证明,但同时这里是代码。

#include <algorithm>
#include <iterator>
#include <iostream>
#include <ostream>
#include <vector>

typedef std::vector<int>   row_t;
typedef std::vector<row_t> matrix_t;

std::size_t height(matrix_t const& M) { return M.size(); }
std::size_t width (matrix_t const& M) { return M.size() ? M[0].size() : 0u; }

std::ostream& operator<<(std::ostream& out, matrix_t const& M) {
  for(unsigned i=0; i<height(M); ++i) {
    std::copy(begin(M[i]), end(M[i]),
          std::ostream_iterator<int>(out, ", "));
    out << std::endl;
  }
  return out;
}

struct sub_matrix_t {
  int i, j, h, w;
  sub_matrix_t(): i(0),j(0),h(0),w(1) {}
  sub_matrix_t(int i_,int j_,int h_,int w_):i(i_),j(j_),h(h_),w(w_) {}
  bool operator<(sub_matrix_t const& rhs) const { return (w*h)<(rhs.w*rhs.h); }
};


// Pop all sub_matrix from the vector keeping only those with an height
// inferior to the passed height.
// Compute the max sub matrix while removing sub matrix with height > h
void pop_sub_m(std::vector<sub_matrix_t>& subs,
           int i, int j, int h, sub_matrix_t& max_m) {

  sub_matrix_t sub_m(i, j, h, 1);

  while(subs.size() && subs.back().h >= h) {
    sub_m = subs.back();
    subs.pop_back();
    sub_m.w = j-sub_m.j;
    max_m = std::max(max_m, sub_m);
  }

  // Now sub_m.{i,j} is updated to the farest coordinates where there is a
  // submatrix with heights >= h

  // If we don't cut the current height (because we changed value) update
  // the current max submatrix
  if(h > 0) {
    sub_m.h = h;
    sub_m.w = j-sub_m.j+1;
    max_m = std::max(max_m, sub_m);
    subs.push_back(sub_m);
  }
}

void push_sub_m(std::vector<sub_matrix_t>& subs,
        int i, int j, int h, sub_matrix_t& max_m) {
  if(subs.empty() || subs.back().h < h)
    subs.emplace_back(i, j, h, 1);
}

void solve(matrix_t const& M, sub_matrix_t& max_m) {
  // Initialize answer suitable for an empty matrix
  max_m = sub_matrix_t();
  if(height(M) == 0 || width(M) == 0) return;

  // 1) Compute the heights of columns of the same values
  matrix_t heights(height(M), row_t(width(M), 1));
  for(unsigned i=height(M)-1; i>0; --i)
    for(unsigned j=0; j<width(M); ++j)
      if(M[i-1][j]==M[i][j])
    heights[i-1][j] = heights[i][j]+1;

  // 2) Run through all columns heights to compute local sub matrices
  std::vector<sub_matrix_t> subs;
  for(int i=height(M)-1; i>=0; --i) {
    push_sub_m(subs, i, 0, heights[i][0], max_m);
    for(unsigned j=1; j<width(M); ++j) {
      bool same_val  = (M[i][j]==M[i][j-1]);
      int pop_height = (same_val) ? heights[i][j] : 0;
      int pop_j      = (same_val) ? j             : j-1;
      pop_sub_m (subs, i, pop_j, pop_height,    max_m);
      push_sub_m(subs, i, j,     heights[i][j], max_m);
    }
    pop_sub_m(subs, i, width(M)-1, 0, max_m);
  }
}

matrix_t M1{
  {10,  9,  9,  9, 80},
  { 5,  9,  9,  9, 10},
  {85, 86, 54, 45, 45},
  {15, 21,  5,  1,  0},
  { 5,  6, 88, 11, 10},
};

matrix_t M2{
  {10, 19,  9, 29, 80},
  { 5,  9,  9,  9, 10},
  { 9,  9, 54, 45, 45},
  { 9,  9,  5,  1,  0},
  { 5,  6, 88, 11, 10},
};


int main() {
  sub_matrix_t answer;

  std::cout << M1 << std::endl;
  solve(M1, answer);
  std::cout << '(' << (answer.w*answer.h)
        << ',' << (answer.j+1) << ',' << (answer.i+1) << ')'
        << std::endl;

  answer = sub_matrix_t();
  std::cout << M2 << std::endl;
  solve(M2, answer);
  std::cout << '(' << (answer.w*answer.h)
        << ',' << (answer.j+1) << ',' << (answer.i+1) << ')'
        << std::endl;
}
于 2015-11-24T14:28:31.440 回答
0

这是一个订单行*列解决方案

它的工作原理

  • 从数组的底部开始,并确定每个数字下方有多少项与一列中的它匹配。这是在 O(MN) 时间内完成的(非常简单)
  • 然后它从上到下和从左到右,看看是否有任何给定的数字与左边的数字匹配。如果是这样,它会跟踪高度如何相互关联以跟踪可能的矩形形状

这是一个有效的python实现。道歉,因为我不确定如何让语法突出显示工作

# this program finds the largest area in an array where all the elements have the same value
# It solves in O(rows * columns) time  using  O(rows*columns) space using dynamic programming




def max_area_subarray(array):

    rows = len(array)
    if (rows == 0):
        return [[]]
    columns = len(array[0])


    # initialize a blank new array
    # this will hold max elements of the same value in a column
    new_array = []
    for i in range(0,rows-1):
        new_array.append([0] * columns)

    # start with the bottom row, these all of 1 element of the same type 
    # below them, including themselves
    new_array.append([1] * columns)

    # go from the second to bottom row up, finding how many contiguous
    # elements of the same type there are
    for i in range(rows-2,-1,-1):
        for j in range(columns-1,-1,-1):
            if ( array[i][j] == array[i+1][j]):
                new_array[i][j] = new_array[i+1][j]+1
            else:
                new_array[i][j] = 1


    # go left to right and match up the max areas
    max_area = 0
    top = 0
    bottom = 0
    left = 0
    right = 0
    for i in range(0,rows):
        running_height =[[0,0,0]]
        for j in range(0,columns):

            matched = False
            if (j > 0):  # if this isn't the leftmost column
                if (array[i][j] == array[i][j-1]):
                    # this matches the array to the left
                    # keep track of if this is a longer column, shorter column, or same as 
                    # the one on the left
                    matched = True

                    while( new_array[i][j] < running_height[-1][0]):
                        # this is less than the one on the left, pop that running 
                        # height from the list, and add it's columns to the smaller
                        # running height below it
                        if (running_height[-1][1] > max_area):
                            max_area = running_height[-1][1]
                            top = i
                            right = j-1
                            bottom = i + running_height[-1][0]-1
                            left = j - running_height[-1][2]

                        previous_column = running_height.pop()
                        num_columns = previous_column[2]

                        if (len(running_height) > 0):
                            running_height[-1][1] += running_height[-1][0] * (num_columns)
                            running_height[-1][2] += num_columns

                        else:
                            # for instance, if we have heights 2,2,1
                            # this will trigger on the 1 after we pop the 2 out, and save the current
                            # height of 1,  the running area of 3, and running columsn of 3
                            running_height.append([new_array[i][j],new_array[i][j]*(num_columns),num_columns])


                    if (new_array[i][j] > running_height[-1][0]):
                        # longer then the one on the left
                        # append this height and area
                        running_height.append([new_array[i][j],new_array[i][j],1])
                    elif (new_array[i][j] == running_height[-1][0]):   
                        # same as the one on the left, add this area to the one on the left
                        running_height[-1][1] += new_array[i][j]
                        running_height[-1][2] += 1



            if (matched == False or j == columns -1):
                while(running_height):
                    # unwind the maximums & see if this is the new max area
                    if (running_height[-1][1] > max_area):
                        max_area = running_height[-1][1]
                        top = i
                        right = j
                        bottom = i + running_height[-1][0]-1
                        left = j - running_height[-1][2]+1

                        # this wasn't a match, so move everything one bay to the left
                        if (matched== False):
                            right = right-1
                            left = left-1


                    previous_column = running_height.pop()
                    num_columns = previous_column[2]
                    if (len(running_height) > 0):
                        running_height[-1][1] += running_height[-1][0] * num_columns
                        running_height[-1][2] += num_columns

            if (matched == False):
                # this is either the left column, or we don't match to the column to the left, so reset
                running_height = [[new_array[i][j],new_array[i][j],1]]
                if (running_height[-1][1] > max_area):
                    max_area = running_height[-1][1]
                    top = i
                    right = j
                    bottom = i + running_height[-1][0]-1
                    left = j - running_height[-1][2]+1


    max_array = []
    for i in range(top,bottom+1):
        max_array.append(array[i][left:right+1])


    return max_array



numbers = [[6,4,1,9],[5,2,2,7],[2,2,2,1],[2,3,1,5]]

for row in numbers:
    print row

print
print

max_array =  max_area_subarray(numbers)    


max_area = len(max_array) * len(max_array[0])
print 'max area is ',max_area
print 
for row in max_array:
    print row
于 2016-05-31T03:55:42.637 回答