6

更新:在我四处搜索并阅读代码中的 doxygen 注释后,我设法让它工作。问题是我在使用resize()方法之前错过了演员阵容,也没有std::ios::binary用于流。如果您想做类似的事情,最好检查 Azoth 的答案。

我正在尝试Eigen::Matrix使用 Cereal 序列化类型。这就是我所拥有的(大致基于https://gist.github.com/mtao/5798888和中的类型cereal/types):

#include <cereal/cereal.hpp>
#include <cereal/archives/binary.hpp>
#include <Eigen/Dense>
#include <fstream>

namespace cereal
{
    template <class Archive, class _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> inline
        typename std::enable_if<traits::is_output_serializable<BinaryData<_Scalar>, Archive>::value, void>::type
        save(Archive & ar, Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> const & m)
    {
            int rows = m.rows();
            int cols = m.cols();
            ar(make_size_tag(static_cast<size_type>(rows * cols)));
            ar(rows);
            ar(cols);
            ar(binary_data(m.data(), rows * cols * sizeof(_Scalar)));
        }

    template <class Archive, class _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> inline
        typename std::enable_if<traits::is_input_serializable<BinaryData<_Scalar>, Archive>::value, void>::type
        load(Archive & ar, Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> const & m)
    {
            size_type size;
            ar(make_size_tag(size));

            int rows;
            int cols;
            ar(rows);
            ar(cols);

            const_cast<Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> &>(m).resize(rows, cols);

            ar(binary_data(const_cast<_Scalar *>(m.data()), static_cast<std::size_t>(size * sizeof(_Scalar))));
        }
}

int main() {
    Eigen::MatrixXd test = Eigen::MatrixXd::Random(10, 3);
    std::ofstream out = std::ofstream("eigen.cereal", std::ios::binary);
    cereal::BinaryOutputArchive archive_o(out);
    archive_o(test);

    std::cout << "test:" << std::endl << test << std::endl;

    out.close();

    Eigen::MatrixXd test_loaded;
    std::ifstream in = std::ifstream("eigen.cereal", std::ios::binary);
    cereal::BinaryInputArchive archive_i(in);
    archive_i(test_loaded);

    std::cout << "test loaded:" << std::endl << test_loaded << std::endl;
}
4

2 回答 2

11

您的代码几乎是正确的,但有一些错误:

您不需要这样做,size_tag因为您正在显式地序列化行数和列数。通常谷类食品size_tag用于可调整大小的容器,如矢量或列表。尽管矩阵可以调整大小,但显式序列化行和列更有意义。

  1. 您的加载函数应通过非常量引用接受其参数
  2. 您不应该将 operator= 与std::ofstream对象一起使用
  3. 更好的做法是让范围界定和 RAII 处理谷物档案的关闭/拆除std::ofstream(二进制档案将立即刷新其内容,但一般来说谷物档案只能保证在销毁时刷新其内容)

这是在 g++ 和 clang++ 下编译并产生正确输出的版本:

#include <cereal/cereal.hpp>
#include <cereal/archives/binary.hpp>
#include <Eigen/Dense>
#include <fstream>

namespace cereal
{
  template <class Archive, class _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> inline
    typename std::enable_if<traits::is_output_serializable<BinaryData<_Scalar>, Archive>::value, void>::type
    save(Archive & ar, Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> const & m)
    {
      int32_t rows = m.rows();
      int32_t cols = m.cols();
      ar(rows);
      ar(cols);
      ar(binary_data(m.data(), rows * cols * sizeof(_Scalar)));
    }

  template <class Archive, class _Scalar, int _Rows, int _Cols, int _Options, int _MaxRows, int _MaxCols> inline
    typename std::enable_if<traits::is_input_serializable<BinaryData<_Scalar>, Archive>::value, void>::type
    load(Archive & ar, Eigen::Matrix<_Scalar, _Rows, _Cols, _Options, _MaxRows, _MaxCols> & m)
    {
      int32_t rows;
      int32_t cols;
      ar(rows);
      ar(cols);

      m.resize(rows, cols);

      ar(binary_data(m.data(), static_cast<std::size_t>(rows * cols * sizeof(_Scalar))));
    }
}

int main() {
  Eigen::MatrixXd test = Eigen::MatrixXd::Random(10, 3);

  {
    std::ofstream out("eigen.cereal", std::ios::binary);
    cereal::BinaryOutputArchive archive_o(out);
    archive_o(test);
  }

  std::cout << "test:" << std::endl << test << std::endl;

  Eigen::MatrixXd test_loaded;

  {
    std::ifstream in("eigen.cereal", std::ios::binary);
    cereal::BinaryInputArchive archive_i(in);
    archive_i(test_loaded);
  }

  std::cout << "test loaded:" << std::endl << test_loaded << std::endl;
}
于 2014-04-05T19:41:16.967 回答
2

基于@Azoth的回答(无论如何,我想把全部功劳都归功于他),我对模板进行了一些改进,以

  • 也为Eigen::Array(而不仅仅是Eigen::Matrix)工作;
  • 不序列化编译时维度(这对 eg 产生了相当大的存储差异Eigen::Vector3f)。

这是结果:

namespace cereal
{
  template <class Archive, class Derived> inline
    typename std::enable_if<traits::is_output_serializable<BinaryData<typename Derived::Scalar>, Archive>::value, void>::type
    save(Archive & ar, Eigen::PlainObjectBase<Derived> const & m){
      typedef Eigen::PlainObjectBase<Derived> ArrT;
      if(ArrT::RowsAtCompileTime==Eigen::Dynamic) ar(m.rows());
      if(ArrT::ColsAtCompileTime==Eigen::Dynamic) ar(m.cols());
      ar(binary_data(m.data(),m.size()*sizeof(typename Derived::Scalar)));
    }

  template <class Archive, class Derived> inline
    typename std::enable_if<traits::is_input_serializable<BinaryData<typename Derived::Scalar>, Archive>::value, void>::type
    load(Archive & ar, Eigen::PlainObjectBase<Derived> & m){
      typedef Eigen::PlainObjectBase<Derived> ArrT;
      Eigen::Index rows=ArrT::RowsAtCompileTime, cols=ArrT::ColsAtCompileTime;
      if(rows==Eigen::Dynamic) ar(rows);
      if(cols==Eigen::Dynamic) ar(cols);
      m.resize(rows,cols);
      ar(binary_data(m.data(),static_cast<std::size_t>(rows*cols*sizeof(typename Derived::Scalar))));
    }
}
于 2018-08-21T08:14:05.617 回答