3

目的是将纯红色图像转换为色轮的任何色调。

  • 单色图像首先转换为 RGB 红色图像,例如: 原始单色图像
  • 然后转化为 HSV
  • 通过添加一个应该与轮子颜色匹配的角度值来修改色调分量
  • 然后将 hsv 图像转换回 rgb 颜色空间。

问题是只能获得绿色或蓝色图像(例如角度约 30° 时没有黄色): 色相旋转

在一些 ipython 单元中执行的代码依赖于 scikit-image 0.10dev:

from skimage import io
from skimage import color
from scipy import ndimage as nd
import numpy as np
from matplotlib import pyplot as plt
import os
cy55 = io.imread('/home/jeanpat/MFISH/PSI/P07/01/Cy5/P070109C.tif')

zero = np.zeros(cy55.shape,dtype=np.uint8)
rgb0 = np.dstack([cy55, zero,zero])

hue_rotations = [18, 36,72,90,108]
images = {}
images[0] = rgb0
hsv0 = color.rgb2hsv(rgb0)
print hsv0[:,:,0].dtype
for hue in hue_rotations:
    hsv = np.copy(hsv0)
    hsv[:,:,0] = hsv[:,:,0]+ hue
    rgb = color.hsv2rgb(hsv)
    images[hue] = rgb
i = 1
plt.figure(num=None, figsize=(15, 5),  facecolor='w', edgecolor='k')
for hue in np.sort(images.keys()):
    plt.subplot(1,6,i,xticks=[],yticks=[])
    plt.title('hue='+str(hue))
    plt.imshow(images[hue])
    i = i +1
plt.show()
4

1 回答 1

7

我在邮件列表上回答了这个问题,但我会在这里复制解决方案,以便更容易找到(并且格式更漂亮)。

基本上,色调的表示方式(0--1 而不是 0--180)、uint8 与浮点数据类型存在一些差异,并且灰度图像如何转换为 RGB 可能存在一些问题。一个简单的使用示例可能如下所示:

import numpy as np
import matplotlib.pyplot as plt
from skimage import color
from skimage import data


def colorize(image, hue):
    """Return image tinted by the given hue based on a grayscale image."""
    hsv = color.rgb2hsv(color.gray2rgb(image))
    hsv[:, :, 0] = hue
    hsv[:, :, 1] = 1  # Turn up the saturation; we want the color to pop!
    return color.hsv2rgb(hsv)


image = data.camera()[::2, ::2]

hue_rotations = np.linspace(0, 1, 6)  # 0--1 is equivalent to 0--180
colorful_images = [colorize(image, hue) for hue in hue_rotations]

fig, axes = plt.subplots(nrows=2, ncols=3)

for ax, array in zip(axes.flat, colorful_images):
    ax.imshow(array, vmin=0, vmax=1)
    ax.set_axis_off()

plt.show()

这使:

彩色灰度图像

于 2014-03-20T22:20:06.220 回答