13

我在 Windows 下使用纯霍夫曼代码实现了一个简单的压缩器。但是我不太了解如何快速解码压缩文件,我的错误算法是:

枚举代​​码表中的所有霍夫曼代码,然后将其与压缩文件中的位进行比较。结果很糟糕:解压 3MB 文件需要 6 个小时。

你能提供一个更有效的算法吗?我应该使用哈希还是什么?

更新:根据我朋友林的建议,我已经用状态表实现了解码器。我认为这种方法应该比遍历霍夫曼树,6s 内 3MB 更好。

谢谢。

4

6 回答 6

21

优化二叉树方法的一种方法是使用查找表。您安排表格以便您可以直接查找特定的编码位模式,从而允许任何代码的最大可能位宽。

由于大多数代码不使用完整的最大宽度,因此它们包含在表中的多个位置 - 一个位置用于未使用位的每个组合。该表指示从输入以及解码输出中丢弃多少位。

如果最长的代码太长,所以该表是不切实际的,折衷办法是使用较小的固定宽度下标查找树。例如,您可以使用包含 256 项的表来处理一个字节。如果输入代码超过 8 位,则表条目指示解码不完整,并将您定向到处理接下来最多 8 位的表。较大的表以内存换取速度 - 256 个项目可能太小了。

我相信这种通用方法被称为“前缀表”,这就是 BobMcGees 引用的代码正在做的事情。一个可能的区别是一些压缩算法需要在解压缩期间更新前缀表——这对于简单的 Huffman 是不需要的。IIRC,我第一次在一本关于包含 GIF 的位图图形文件格式的书中看到它,那是在专利恐慌之前的一段时间。

从二叉树模型中预先计算完整的查找表、等效的哈希表或小表树应该很容易。二叉树仍然是代码工作方式的关键表示(心理模型)——这个查找表只是实现它的优化方式。

于 2010-02-21T14:13:47.973 回答
5

为什么不看看GZIP 源码是怎么做的,特别是 unpack.c 中的 Huffman 解压代码呢?它正在做你正在做的事情,只是它做得更快,更快。

据我所知,它使用查找数组和移位/屏蔽操作对整个单词进行操作以更快地运行。虽然代码很密集。

编辑:这是完整的来源

/* unpack.c -- decompress files in pack format.
 * Copyright (C) 1992-1993 Jean-loup Gailly
 * This is free software; you can redistribute it and/or modify it under the
 * terms of the GNU General Public License, see the file COPYING.
 */

#ifdef RCSID
static char rcsid[] = "$Id: unpack.c,v 1.4 1993/06/11 19:25:36 jloup Exp $";
#endif

#include "tailor.h"
#include "gzip.h"
#include "crypt.h"

#define MIN(a,b) ((a) <= (b) ? (a) : (b))
/* The arguments must not have side effects. */

#define MAX_BITLEN 25
/* Maximum length of Huffman codes. (Minor modifications to the code
 * would be needed to support 32 bits codes, but pack never generates
 * more than 24 bits anyway.)
 */

#define LITERALS 256
/* Number of literals, excluding the End of Block (EOB) code */

#define MAX_PEEK 12
/* Maximum number of 'peek' bits used to optimize traversal of the
 * Huffman tree.
 */

local ulg orig_len;       /* original uncompressed length */
local int max_len;        /* maximum bit length of Huffman codes */

local uch literal[LITERALS];
/* The literal bytes present in the Huffman tree. The EOB code is not
 * represented.
 */

local int lit_base[MAX_BITLEN+1];
/* All literals of a given bit length are contiguous in literal[] and
 * have contiguous codes. literal[code+lit_base[len]] is the literal
 * for a code of len bits.
 */

local int leaves [MAX_BITLEN+1]; /* Number of leaves for each bit length */
local int parents[MAX_BITLEN+1]; /* Number of parents for each bit length */

local int peek_bits; /* Number of peek bits currently used */

/* local uch prefix_len[1 << MAX_PEEK]; */
#define prefix_len outbuf
/* For each bit pattern b of peek_bits bits, prefix_len[b] is the length
 * of the Huffman code starting with a prefix of b (upper bits), or 0
 * if all codes of prefix b have more than peek_bits bits. It is not
 * necessary to have a huge table (large MAX_PEEK) because most of the
 * codes encountered in the input stream are short codes (by construction).
 * So for most codes a single lookup will be necessary.
 */
#if (1<<MAX_PEEK) > OUTBUFSIZ
    error cannot overlay prefix_len and outbuf
#endif

local ulg bitbuf;
/* Bits are added on the low part of bitbuf and read from the high part. */

local int valid;                  /* number of valid bits in bitbuf */
/* all bits above the last valid bit are always zero */

/* Set code to the next 'bits' input bits without skipping them. code
 * must be the name of a simple variable and bits must not have side effects.
 * IN assertions: bits <= 25 (so that we still have room for an extra byte
 * when valid is only 24), and mask = (1<<bits)-1.
 */
#define look_bits(code,bits,mask) \
{ \
  while (valid < (bits)) bitbuf = (bitbuf<<8) | (ulg)get_byte(), valid += 8; \
  code = (bitbuf >> (valid-(bits))) & (mask); \
}

/* Skip the given number of bits (after having peeked at them): */
#define skip_bits(bits)  (valid -= (bits))

#define clear_bitbuf() (valid = 0, bitbuf = 0)

/* Local functions */

local void read_tree  OF((void));
local void build_tree OF((void));

/* ===========================================================================
 * Read the Huffman tree.
 */
local void read_tree()
{
    int len;  /* bit length */
    int base; /* base offset for a sequence of leaves */
    int n;

    /* Read the original input size, MSB first */
    orig_len = 0;
    for (n = 1; n <= 4; n++) orig_len = (orig_len << 8) | (ulg)get_byte();

    max_len = (int)get_byte(); /* maximum bit length of Huffman codes */
    if (max_len > MAX_BITLEN) {
    error("invalid compressed data -- Huffman code > 32 bits");
    }

    /* Get the number of leaves at each bit length */
    n = 0;
    for (len = 1; len <= max_len; len++) {
    leaves[len] = (int)get_byte();
    n += leaves[len];
    }
    if (n > LITERALS) {
    error("too many leaves in Huffman tree");
    }
    Trace((stderr, "orig_len %ld, max_len %d, leaves %d\n",
       orig_len, max_len, n));
    /* There are at least 2 and at most 256 leaves of length max_len.
     * (Pack arbitrarily rejects empty files and files consisting of
     * a single byte even repeated.) To fit the last leaf count in a
     * byte, it is offset by 2. However, the last literal is the EOB
     * code, and is not transmitted explicitly in the tree, so we must
     * adjust here by one only.
     */
    leaves[max_len]++;

    /* Now read the leaves themselves */
    base = 0;
    for (len = 1; len <= max_len; len++) {
    /* Remember where the literals of this length start in literal[] : */
    lit_base[len] = base;
    /* And read the literals: */
    for (n = leaves[len]; n > 0; n--) {
        literal[base++] = (uch)get_byte();
    }
    }
    leaves[max_len]++; /* Now include the EOB code in the Huffman tree */
}

/* ===========================================================================
 * Build the Huffman tree and the prefix table.
 */
local void build_tree()
{
    int nodes = 0; /* number of nodes (parents+leaves) at current bit length */
    int len;       /* current bit length */
    uch *prefixp;  /* pointer in prefix_len */

    for (len = max_len; len >= 1; len--) {
    /* The number of parent nodes at this level is half the total
     * number of nodes at parent level:
     */
    nodes >>= 1;
    parents[len] = nodes;
    /* Update lit_base by the appropriate bias to skip the parent nodes
     * (which are not represented in the literal array):
     */
    lit_base[len] -= nodes;
    /* Restore nodes to be parents+leaves: */
    nodes += leaves[len];
    }
    /* Construct the prefix table, from shortest leaves to longest ones.
     * The shortest code is all ones, so we start at the end of the table.
     */
    peek_bits = MIN(max_len, MAX_PEEK);
    prefixp = &prefix_len[1<<peek_bits];
    for (len = 1; len <= peek_bits; len++) {
    int prefixes = leaves[len] << (peek_bits-len); /* may be 0 */
    while (prefixes--) *--prefixp = (uch)len;
    }
    /* The length of all other codes is unknown: */
    while (prefixp > prefix_len) *--prefixp = 0;
}

/* ===========================================================================
 * Unpack in to out.  This routine does not support the old pack format
 * with magic header \037\037.
 *
 * IN assertions: the buffer inbuf contains already the beginning of
 *   the compressed data, from offsets inptr to insize-1 included.
 *   The magic header has already been checked. The output buffer is cleared.
 */
int unpack(in, out)
    int in, out;            /* input and output file descriptors */
{
    int len;                /* Bit length of current code */
    unsigned eob;           /* End Of Block code */
    register unsigned peek; /* lookahead bits */
    unsigned peek_mask;     /* Mask for peek_bits bits */

    ifd = in;
    ofd = out;

    read_tree();     /* Read the Huffman tree */
    build_tree();    /* Build the prefix table */
    clear_bitbuf();  /* Initialize bit input */
    peek_mask = (1<<peek_bits)-1;

    /* The eob code is the largest code among all leaves of maximal length: */
    eob = leaves[max_len]-1;
    Trace((stderr, "eob %d %x\n", max_len, eob));

    /* Decode the input data: */
    for (;;) {
    /* Since eob is the longest code and not shorter than max_len,
         * we can peek at max_len bits without having the risk of reading
         * beyond the end of file.
     */
    look_bits(peek, peek_bits, peek_mask);
    len = prefix_len[peek];
    if (len > 0) {
        peek >>= peek_bits - len; /* discard the extra bits */
    } else {
        /* Code of more than peek_bits bits, we must traverse the tree */
        ulg mask = peek_mask;
        len = peek_bits;
        do {
                len++, mask = (mask<<1)+1;
        look_bits(peek, len, mask);
        } while (peek < (unsigned)parents[len]);
        /* loop as long as peek is a parent node */
    }
    /* At this point, peek is the next complete code, of len bits */
    if (peek == eob && len == max_len) break; /* end of file? */
    put_ubyte(literal[peek+lit_base[len]]);
    Tracev((stderr,"%02d %04x %c\n", len, peek,
        literal[peek+lit_base[len]]));
    skip_bits(len);
    } /* for (;;) */

    flush_window();
    Trace((stderr, "bytes_out %ld\n", bytes_out));
    if (orig_len != (ulg)bytes_out) {
    error("invalid compressed data--length error");
    }
    return OK;
}
于 2010-02-19T16:30:26.870 回答
4

解压缩 Huffman 代码的典型方法是使用二叉树。您将代码插入树中,以便代码中的每个位代表左侧 (0) 或右侧 (1) 的分支,叶子中包含解码的字节(或您拥有的任何值)。

然后,解码只是从编码内容中读取位,为每个位遍历树的情况。当你到达一片叶子时,发出解码后的值,并继续阅读直到输入用尽。

更新: 此页面描述了该技术,并具有精美的图形。

于 2010-02-10T08:10:54.743 回答
2

您可以对通常的 Huffmann 树查找执行一种批量查找:

  1. 选择位深度(称为深度n);这是构建表的速度、内存和时间投资之间的权衡;
  2. 为长度为n的所有 2^ n位字符串构建查找表。每个条目可以编码几个完整的令牌;通常还会留下一些仅作为霍夫曼代码前缀的位:对于每个位,为该代码创建一个指向进一步查找表的链接;
  3. 构建进一步的查找表。表的总数最多比霍夫曼树中编码的条目数少一。

选择深度为 4 的倍数,例如深度 8,非常适合位移操作。

后记 这与马铃薯瓦特对 unwind 答案的评论以及 Steve314 对使用多个表的回答中的想法不同:这意味着所有n位查找都已投入使用,因此应该更快,但会使表构建和查找变得更加棘手,并且对于给定的深度,将消耗更多的空间。

于 2010-02-24T06:42:25.090 回答
0

为什么不在同一个源模块中使用解压算法呢?这似乎是一个不错的算法。

于 2010-02-10T08:00:49.573 回答
0

其他答案是正确的,但这是我最近编写的一些 Rust 代码,以使这些想法具体化。这是关键程序:

  fn decode( &self, input: &mut InpBitStream ) -> usize
  {
    let mut sym = self.lookup[ input.peek( self.peekbits ) ];
    if sym >= self.ncode
    {
      sym = self.lookup[ sym - self.ncode + ( input.peek( self.maxbits ) >> self.peekbits ) ];
    }  
    input.advance( self.nbits[ sym ] as usize );
    sym
  }

棘手的一点是设置查找表,请参阅 Rust 中完整的 RFC 1951 解码器中的 BitDecoder::setup_code:

// RFC 1951 inflate ( de-compress ).

pub fn inflate( data: &[u8] ) -> Vec<u8>
{
  let mut inp = InpBitStream::new( &data );
  let mut out = Vec::new();
  let _chk = inp.get_bits( 16 ); // Checksum
  loop
  {
    let last = inp.get_bit();
    let btype = inp.get_bits( 2 );
    match btype
    {
      2 => { do_dyn( &mut inp, &mut out ); }
      1 => { do_fixed( &mut inp, &mut out ); }
      0 => { do_copy( &mut inp, &mut out ); }
      _ => { }
    }
    if last != 0 { break; }
  }  
  out
}

fn do_dyn( inp: &mut InpBitStream, out: &mut Vec<u8> )
{
  let n_lit_code = 257 + inp.get_bits( 5 );
  let n_dist_code = 1 + inp.get_bits( 5 );
  let n_len_code = 4 + inp.get_bits( 4 );

  let mut len = LenDecoder::new( inp, n_len_code );

  let mut lit = BitDecoder::new( n_lit_code );
  len.get_lengths( inp, &mut lit.nbits );
  lit.init(); 

  let mut dist = BitDecoder::new( n_dist_code );
  len.get_lengths( inp, &mut dist.nbits );
  dist.init();

  loop
  {
    let x = lit.decode( inp );
    match x
    {
      0..=255 => { out.push( x as u8 ); }
      256 =>  { break; } 
      _ =>
      {
        let mc = x - 257;
        let length = MATCH_OFF[ mc ] + inp.get_bits( MATCH_EXTRA[ mc ] as usize );
        let dc = dist.decode( inp );
        let distance = DIST_OFF[ dc ] + inp.get_bits( DIST_EXTRA[ dc ] as usize );
        copy( out, distance, length ); 
      }
    }
  }
} // end do_dyn

fn copy( out: &mut Vec<u8>, distance: usize, mut length: usize )
{
  let mut i = out.len() - distance;
  while length > 0
  {
    out.push( out[ i ] );
    i += 1;
    length -= 1;
  }
}

/// Decode length-limited Huffman codes.
struct BitDecoder
{
  ncode: usize,
  nbits: Vec<u8>,
  maxbits: usize,
  peekbits: usize,
  lookup: Vec<usize>
}

impl BitDecoder
{
  fn new( ncode: usize ) -> BitDecoder
  {
    BitDecoder 
    { 
      ncode,
      nbits: vec![0; ncode],
      maxbits: 0,
      peekbits: 0,
      lookup: Vec::new()
    }
  }

  /// The key routine, will be called many times.
  fn decode( &self, input: &mut InpBitStream ) -> usize
  {
    let mut sym = self.lookup[ input.peek( self.peekbits ) ];
    if sym >= self.ncode
    {
      sym = self.lookup[ sym - self.ncode + ( input.peek( self.maxbits ) >> self.peekbits ) ];
    }  
    input.advance( self.nbits[ sym ] as usize );
    sym
  }

  fn init( &mut self )
  {
    let ncode = self.ncode;

    let mut max_bits : usize = 0; 
    for bp in &self.nbits 
    { 
      let bits = *bp as usize;
      if bits > max_bits { max_bits = bits; } 
    }

    self.maxbits = max_bits;
    self.peekbits = if max_bits > 8 { 8 } else { max_bits };
    self.lookup.resize( 1 << self.peekbits, 0 );

    // Code below is from rfc1951 page 7

    let mut bl_count : Vec<usize> = vec![ 0; max_bits + 1 ]; // the number of codes of length N, N >= 1.

    for i in 0..ncode { bl_count[ self.nbits[i] as usize ] += 1; }

    let mut next_code : Vec<usize> = vec![ 0; max_bits + 1 ];
    let mut code = 0; 
    bl_count[0] = 0;

    for i in 0..max_bits
    {
      code = ( code + bl_count[i] ) << 1;
      next_code[ i + 1 ] = code;
    }

    for i in 0..ncode
    {
      let len = self.nbits[ i ] as usize;
      if len != 0
      {
        self.setup_code( i, len, next_code[ len ] );
        next_code[ len ] += 1;
      }
    }
  }

  // Decoding is done using self.lookup ( see decode ). To keep the lookup table small,
  // codes longer than 8 bits are looked up in two peeks.

  fn setup_code( &mut self, sym: usize, len: usize, mut code: usize )
  {
    if len <= self.peekbits
    {
      let diff = self.peekbits - len;
      for i in code << diff .. (code << diff) + (1 << diff)
      {
        // bits are reversed to match InpBitStream::peek
        let r = reverse( i, self.peekbits );
        self.lookup[ r ] = sym;
      }
    } else {
      // Secondary lookup required.
      let peekbits2 = self.maxbits - self.peekbits;

      // Split code into peekbits portion ( key ) and remainder ( code).
      let diff1 = len - self.peekbits;
      let key = code >> diff1;
      code &= ( 1 << diff1 ) - 1;

      // Get the secondary lookup.
      let kr = reverse( key, self.peekbits );
      let mut base = self.lookup[ kr ];
      if base == 0 // Secondary lookup not yet allocated for this key.
      {
        base = self.lookup.len();
        self.lookup.resize( base + ( 1 << peekbits2 ), 0 );
        self.lookup[ kr ] = self.ncode + base;
      } else {
        base -= self.ncode;
      }

      // Set the secondary lookup values.
      let diff = self.maxbits - len;
      for i in code << diff .. (code << diff) + (1<<diff)
      { 
        let r = reverse( i, peekbits2 );
        self.lookup[ base + r ] = sym;
      }
    }    
  }
} // end impl BitDecoder

struct InpBitStream<'a>
{
  data: &'a [u8],
  pos: usize,
  buf: usize,
  got: usize, // Number of bits in buffer.
}

impl <'a> InpBitStream<'a>
{
  fn new( data: &'a [u8] ) -> InpBitStream
  {
    InpBitStream { data, pos: 0, buf: 1, got: 0 }
  } 

  fn peek( &mut self, n: usize ) -> usize
  {
    while self.got < n
    {
      if self.pos < self.data.len() 
      {
        self.buf |= ( self.data[ self.pos ] as usize ) << self.got;
      }
      self.pos += 1;
      self.got += 8;
    }
    self.buf & ( ( 1 << n ) - 1 )
  }

  fn advance( &mut self, n:usize )
  { 
    self.buf >>= n;
    self.got -= n;
  }

  fn get_bit( &mut self ) -> usize
  {
    if self.got == 0 { self.peek( 1 ); }
    let result = self.buf & 1;
    self.advance( 1 );
    result
  }

  fn get_bits( &mut self, n: usize ) -> usize
  { 
    let result = self.peek( n );
    self.advance( n );
    result
  }

  fn get_huff( &mut self, mut n: usize ) -> usize 
  { 
    let mut result = 0; 
    while n > 0
    { 
      result = ( result << 1 ) + self.get_bit(); 
      n -= 1;
    }
    result
  }

  fn clear_bits( &mut self )
  {
    self.got = 0;
  }
} //  end impl InpBitStream

/// Decode code lengths.
struct LenDecoder
{
  plenc: u8, // previous length code ( which can be repeated )
  rep: usize,   // repeat
  bd: BitDecoder,
}

/// Decodes an array of lengths. There are special codes for repeats, and repeats of zeros.
impl LenDecoder
{
  fn new( inp: &mut InpBitStream, n_len_code: usize ) -> LenDecoder
  {
    let mut result = LenDecoder { plenc: 0, rep:0, bd: BitDecoder::new( 19 ) };

    // Read the array of 3-bit code lengths from input.
    for i in 0..n_len_code 
    { 
      result.bd.nbits[ CLEN_ALPHABET[i] as usize ] = inp.get_bits(3) as u8; 
    }
    result.bd.init();
    result
  }

  // Per RFC1931 page 13, get array of code lengths.
  fn get_lengths( &mut self, inp: &mut InpBitStream, result: &mut Vec<u8> )
  {
    let n = result.len();
    let mut i = 0;
    while self.rep > 0 { result[i] = self.plenc; i += 1; self.rep -= 1; }
    while i < n
    { 
      let lenc = self.bd.decode( inp ) as u8;
      if lenc < 16 
      {
        result[i] = lenc; 
        i += 1; 
        self.plenc = lenc; 
      } else {
        if lenc == 16 { self.rep = 3 + inp.get_bits(2); }
        else if lenc == 17 { self.rep = 3 + inp.get_bits(3); self.plenc=0; }
        else if lenc == 18 { self.rep = 11 + inp.get_bits(7); self.plenc=0; } 
        while i < n && self.rep > 0 { result[i] = self.plenc; i += 1; self.rep -= 1; }
      }
    }
  } // end get_lengths
} // end impl LenDecoder

/// Reverse a string of bits.
pub fn reverse( mut x:usize, mut bits: usize ) -> usize
{ 
  let mut result: usize = 0; 
  while bits > 0
  {
    result = ( result << 1 ) | ( x & 1 ); 
    x >>= 1; 
    bits -= 1;
  } 
  result
} 

fn do_copy( inp: &mut InpBitStream, out: &mut Vec<u8> )
{
  inp.clear_bits(); // Discard any bits in the input buffer
  let mut n = inp.get_bits( 16 );
  let _n1 = inp.get_bits( 16 );
  while n > 0 { out.push( inp.data[ inp.pos ] ); n -= 1; inp.pos += 1; }
}

fn do_fixed( inp: &mut InpBitStream, out: &mut Vec<u8> ) // RFC1951 page 12.
{
  loop
  {
    // 0 to 23 ( 7 bits ) => 256 - 279; 48 - 191 ( 8 bits ) => 0 - 143; 
    // 192 - 199 ( 8 bits ) => 280 - 287; 400..511 ( 9 bits ) => 144 - 255
    let mut x = inp.get_huff( 7 ); 
    if x <= 23 
    { 
      x += 256; 
    } else {
      x = ( x << 1 ) + inp.get_bit();
      if x <= 191 { x -= 48; }
      else if x <= 199 { x += 88; }
      else { x = ( x << 1 ) + inp.get_bit() - 256; }
    }

    match x
    {
      0..=255 => { out.push( x as u8 ); }
      256 => { break; } 
      _ => // 257 <= x && x <= 285 
      { 
        x -= 257;
        let length = MATCH_OFF[x] + inp.get_bits( MATCH_EXTRA[ x ] as usize );
        let dcode = inp.get_huff( 5 );
        let distance = DIST_OFF[dcode] + inp.get_bits( DIST_EXTRA[dcode] as usize );
        copy( out, distance, length );
      }
    }
  }
} // end do_fixed

// RFC 1951 constants.

pub static CLEN_ALPHABET : [u8; 19] = [ 16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15 ];

pub static MATCH_OFF : [usize; 30] = [ 3,4,5,6, 7,8,9,10, 11,13,15,17, 19,23,27,31, 35,43,51,59, 
  67,83,99,115,  131,163,195,227, 258, 0xffff ];

pub static MATCH_EXTRA : [u8; 29] = [ 0,0,0,0, 0,0,0,0, 1,1,1,1, 2,2,2,2, 3,3,3,3, 4,4,4,4, 5,5,5,5, 0 ];

pub static DIST_OFF : [usize; 30] = [ 1,2,3,4, 5,7,9,13, 17,25,33,49, 65,97,129,193, 257,385,513,769, 
  1025,1537,2049,3073, 4097,6145,8193,12289, 16385,24577 ];

pub static DIST_EXTRA : [u8; 30] = [ 0,0,0,0, 1,1,2,2, 3,3,4,4, 5,5,6,6, 7,7,8,8, 9,9,10,10, 11,11,12,12, 13,13 ];

Github 仓库在这里

于 2020-07-20T11:58:48.367 回答