如果您使用 word2vec,则需要计算每个句子/文档中所有单词的平均向量,并使用向量之间的余弦相似度:
import numpy as np
from scipy import spatial
index2word_set = set(model.wv.index2word)
def avg_feature_vector(sentence, model, num_features, index2word_set):
words = sentence.split()
feature_vec = np.zeros((num_features, ), dtype='float32')
n_words = 0
for word in words:
if word in index2word_set:
n_words += 1
feature_vec = np.add(feature_vec, model[word])
if (n_words > 0):
feature_vec = np.divide(feature_vec, n_words)
return feature_vec
计算相似度:
s1_afv = avg_feature_vector('this is a sentence', model=model, num_features=300, index2word_set=index2word_set)
s2_afv = avg_feature_vector('this is also sentence', model=model, num_features=300, index2word_set=index2word_set)
sim = 1 - spatial.distance.cosine(s1_afv, s2_afv)
print(sim)
> 0.915479828613