我有一个损失函数 L 和 2 个信号 f(t),g(t) 。我想找到s
最小化的功能: L(f(t)-g(t+s(t)))+lambda*integral(s''(t))
理想情况下,s
应该是多项式或样条。
这是我为解决问题而编写的代码:
import numpy as np
from numpy import *
from numpy.linalg import *
import sklearn as sk
import scipy as sp
import scipy.io
from matplotlib.pyplot import *
from scipy.interpolate import *
#mat = scipy.io.loadmat('/home/luca/Documents/phd_python_code/peak_aligment/john_example.mat')
mat = scipy.io.loadmat('../peak_aligment/john_example.mat')
t1=mat["t1"].squeeze()
t2=mat["t2"].squeeze()
t3=mat["t3"].squeeze()
t=sort(unique(concatenate((t1,t2,t3),axis=0)))
t_min=max(min(t1),min(t2),min(t3))
t_max=min(max(t1),max(t2),max(t3))
t=[val for val in t if t_min<=val<=t_max]
sig1=mat["sig_1"].squeeze()
sig2=mat["sig_2"].squeeze()
sig3=mat["sig_3"].squeeze()
s1=interp1d(t1,sig1,kind="cubic")
s2=interp1d(t2,sig2,kind="cubic")
s3=interp1d(t3,sig3,kind="cubic")
编辑:我更接近解决方案,但我仍然遇到问题。
我定义了一个成本函数:
def lost_function(p):
pt=polyval(p,t)
return norm(s1(t)-s2(pt))/len(index)
我正在尝试使用 scipy.optimize.minize 将其最小化。主要问题是经常pt
超出 的范围值t
。所以当我打电话时s2(pt) i
收到一个错误。如何在 t 的范围之外插入函数?