以下是查找整数因子的六种不同实现的比较:
function [t,v] = testFactors()
% integer to factor
%{45, 60, 2059, 3135, 223092870, 3491888400};
n = 2*2*2*2*3*3*3*5*5*7*11*13*17*19;
% functions to compare
fcns = {
@() factors1(n);
@() factors2(n);
@() factors3(n);
@() factors4(n);
%@() factors5(n);
@() factors6(n);
};
% timeit
t = cellfun(@timeit, fcns);
% check results
v = cellfun(@feval, fcns, 'UniformOutput',false);
assert(isequal(v{:}));
end
function f = factors1(n)
% vectorized implementation of factors2()
f = find(rem(n, 1:floor(sqrt(n))) == 0);
f = unique([1, n, f, fix(n./f)]);
end
function f = factors2(n)
% factors come in pairs, the smaller of which is no bigger than sqrt(n)
f = [1, n];
for k=2:floor(sqrt(n))
if rem(n,k) == 0
f(end+1) = k;
f(end+1) = fix(n/k);
end
end
f = unique(f);
end
function f = factors3(n)
% Get prime factors, and compute products of all possible subsets of size>1
pf = factor(n);
f = arrayfun(@(k) prod(nchoosek(pf,k),2), 2:numel(pf), ...
'UniformOutput',false);
f = unique([1; pf(:); vertcat(f{:})])'; %'
end
function f = factors4(n)
% http://rosettacode.org/wiki/Factors_of_an_integer#MATLAB_.2F_Octave
pf = factor(n); % prime decomposition
K = dec2bin(0:2^length(pf)-1)-'0'; % all possible permutations
f = ones(1,2^length(pf));
for k=1:size(K)
f(k) = prod(pf(~K(k,:))); % compute products
end;
f = unique(f); % eliminate duplicates
end
function f = factors5(n)
% @LuisMendo: brute-force implementation
f = find(rem(n, 1:n) == 0);
end
function f = factors6(n)
% Symbolic Math Toolbox
f = double(evalin(symengine, sprintf('numlib::divisors(%d)',n)));
end
结果:
>> [t,v] = testFactors();
>> t
t =
0.0019 % factors1()
0.0055 % factors2()
0.0102 % factors3()
0.0756 % factors4()
0.1314 % factors6()
>> numel(v{1})
ans =
1920
尽管第一个矢量化版本最快,但基于循环的等效实现 ( factors2
) 也紧随其后,这要归功于自动 JIT 优化。
请注意,我必须禁用蛮力实现 ( factors5()
),因为它会引发内存不足错误(1:3491888400
以双精度存储向量需要超过 26GB 的内存!)。这种方法对于大整数显然是不可行的,无论是空间还是时间。
结论:使用以下矢量化实现:)
n = 3491888400;
f = find(rem(n, 1:floor(sqrt(n))) == 0);
f = unique([1, n, f, fix(n./f)]);