您启发了我在 SQL Server 中实现线性回归。这可以为 MySQL/Oracle/Whatever 修改,而不会有太多麻烦。这是确定每个 entity_id 一小时内趋势的最佳数学方法,它将仅选择具有积极趋势的那些。
它实现了此处列出的计算 B1hat 的公式:https ://en.wikipedia.org/wiki/Regression_analysis#Linear_regression
create table #temp
(
entity_id int,
value int,
[date] datetime
)
insert into #temp (entity_id, value, [date])
values
(1,10,'20140102 07:00:00 AM'),
(1,20,'20140102 07:15:00 AM'),
(1,30,'20140102 07:30:00 AM'),
(2,50,'20140102 07:00:00 AM'),
(2,20,'20140102 07:47:00 AM'),
(3,40,'20140102 07:00:00 AM'),
(3,40,'20140102 07:52:00 AM')
select entity_id, 1.0*sum((x-xbar)*(y-ybar))/sum((x-xbar)*(x-xbar)) as Beta
from
(
select entity_id,
avg(value) over(partition by entity_id) as ybar,
value as y,
avg(datediff(second,'20140102 07:00:00 AM',[date])) over(partition by entity_id) as xbar,
datediff(second,'20140102 07:00:00 AM',[date]) as x
from #temp
where [date]>='20140102 07:00:00 AM' and [date]<'20140102 08:00:00 AM'
) as Calcs
group by entity_id
having 1.0*sum((x-xbar)*(y-ybar))/sum((x-xbar)*(x-xbar))>0