在下面的气泡图中,我的目的是为形状、大小和填充美学提供图例。
前两个进展顺利,但填充美感cluster
消失了,所有簇都显示为黑点,这是一个错误ggplot2
还是什么?请我非常感谢任何帮助保留填充美学的颜色。
这是我的试验:
p1 <- ggplot()+
geom_hline(yintercept= 0, linetype=3) +
geom_vline(xintercept = 0, linetype=3) +
scale_fill_manual(values = c("black","#E31A1C","#66A61E","#332288")) +
scale_shape_manual(values = c(24,21), labels=c("1","2")) +
labs (x="Dim1 (60.98%)", y="Dim2 (13.80%)") +
theme_bw(base_size = 16) +
theme (panel.grid.major = element_blank(),panel.grid.minor = element_blank())
p1 + geom_point(aes(-PC1, PC2, size=Acute, shape=Visits, fill=WardEuc), data=df) +
scale_size_continuous(range = c(1, 8),labels=c("0","1","2","3"))+ #
guides(shape=guide_legend("Var1"), size = guide_legend("Var2"), fill=guide_legend("Cluster"))
这产生了这个情节:
这是我的数据集的 dput 输出:
structure(list(PC1 = c(1.348, 0.829, -4.546, -1.856, -0.248,
-0.877, 2.258, 0.281, 0.303, -1.221, 2.272, 1.666, 3.3, 1.567,
-2.408, -4.708, 0.127, -1.353, 2.541, 2.455, -2.469, -3.087,
-2.744, 1.141, -1.633, 1.301, 1.058, 1.05, -0.341, -1.668, -1.063,
-1.089, 0.1, 0.173, 0.31, 0.01, -1.953, 0.835, 0.001, -0.946,
0.352, -0.106, 1.39, -2.332, -1.423, 0.878, 1.199, 1.527, 0.749,
0.842, -1.223, -1.788, 0.692, 0.36, 0.042, 0.976, 1.58, 1.209,
-10.13, -10.429, -10.295, -9.302, 0.777, 2.706, -0.226, -2.518,
0.348, 0.397, 0.615, 2.227, -0.047, -5.526, 2.33, 2.053, -3.415,
-4.069, -0.468, -2.12, 3.009, 2.446, -1.6, -2.167, 1.499, 0.999,
0.885, -0.088, 4.136, 4.85, 3.478, 2.513, 1.133, 1.767, -1.302,
-1.764, -3.586, -0.183, 1.879, 3.227, 1.79, 4.215, 2.77, 4.091,
2.593, 2.934, -5.191, -6.954, -9.494, -10.658, 0.467, 2.7, -1.604,
-1.011, -0.417, -0.037, 0.857, 1.31, -1.066, -0.693, 1.962, 2.687,
0.074, 2.135, -1.161, -0.622, -1.146, 0.248, -0.029, 0.433, -0.802,
0.086, -0.165, -0.522, 0.058, -0.714, 4.197, 4.09, 4.271, 4.732,
4.967, 4.566, 0.85, 1.24, -1.262, -1.116, -0.822, -0.698, -0.049,
-0.545, 1.573, 2.211, -0.222, -0.229, 0.77, 0.203, 0.735, 1.458,
0.112, -0.401, 0.208, -1.063, 0.84, 1.786, -1.351, 0.298, 1.897,
1.913, 2.141, -0.535, -1.983, -1.503, -0.597, 0.219, 2.734, 1.232,
-0.759, -0.699, -0.612, 2.524, -0.656, 0.199, 1.591, -1.12, -3.343,
-1.905, -0.054, 3.166, 0.804, 0.866, -1.419, 0.558, -0.473, 0.403,
0.835, 0.38, -0.389, 0.796, -0.817, 1.791, 0.253, 1.167, -1.097,
-2.799, -1.119, -4.832, 0.247, 0.61, -0.639, -1.065, 0.59, 1.13,
-0.322, 0.081, 4.025, 2.156, 3.067, 2.696, -0.757, -0.724), PC2 = c(-0.32,
-0.147, 0.927, -0.101, -0.539, -0.161, -1.16, -0.204, -1.007,
-0.215, -0.598, -0.435, -1.304, -0.875, 0.095, 0.671, -0.643,
-0.502, -1.428, -0.512, 0.381, 0.25, 0.223, -0.052, 0.221, -0.584,
-1.53, 0.773, -0.549, -0.044, 0.358, -0.427, -0.818, -1.227,
-0.148, 0.049, -0.183, -0.679, -0.657, -0.345, -0.469, -1.647,
0.29, 0.495, -0.307, -0.396, -0.371, 1.183, -1.113, -0.587, -0.605,
-0.132, -1.063, -0.775, -0.143, -0.398, -0.797, -0.022, 2.338,
1.982, 1.84, 1.506, -1.257, -0.956, -0.615, -0.287, -1.318, -1,
-1.187, -0.282, 0.732, 1.016, -0.922, -0.929, 0.174, 0.322, -0.922,
-0.6, -0.729, -1.239, -0.068, -0.906, -1.071, -1.916, -0.043,
0.657, 3.863, 1.354, 2.586, 2.72, -1.064, -0.444, -0.286, -0.567,
0.111, -1.023, 2.559, 4.219, 5.129, 3.611, 2.518, 4.053, -0.615,
-0.498, 1.54, 1.425, 1.73, 1.802, 0.789, -0.675, -0.361, -1.008,
0.032, -0.857, -0.444, 0.13, -0.343, -0.537, -0.881, -0.749,
-0.261, -0.026, 0.107, 0.07, -0.084, -0.734, -0.383, -0.254,
-1.358, 0.949, -0.096, -1.15, -0.832, -0.01, 3.656, 4.036, 1.901,
0.347, 0.46, 0.903, 0.534, 0.937, -0.506, -0.86, 0.543, -1.097,
-1.125, -0.108, -1.179, 1.813, -0.892, -0.92, -1.259, -1.046,
-0.193, -0.156, -1.161, 0.164, 0.403, 0.252, -0.886, -0.71, -0.2,
-0.38, -1.005, -0.277, -0.586, -0.941, -0.683, -0.274, -0.579,
-0.984, -0.076, 1.438, -0.376, -0.051, -0.492, 0.162, -0.568,
-1.068, -0.81, -0.147, 0.212, -0.288, -0.542, -0.28, -1.078,
-0.879, 0.143, -0.083, -0.443, -0.805, -0.9, -0.234, -0.491,
-0.483, -0.779, -1.098, -0.329, -0.952, 0.035, -0.33, -0.498,
0.771, 0.547, -0.301, 0.179, -0.22, -0.131, 1.323, -0.099, -0.197,
1.741, 4.994, 4.431, 2.467, -0.384, -0.751), Acute = c(1, 1,
4, 4, 1, 1, 1, 1, 4, 4, 2, 2, 1, 1, 4, 4, 1, 2, 1, 1, 2, 3, 3,
3, 2, 2, 1, 1, 2, 2, 3, 4, 1, 2, 1, 1, 2, 2, 3, 3, 2, 1, 2, 2,
1, 1, 1, 1, 1, 2, 4, 4, 2, 2, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 4,
3, 2, 2, 1, 1, 2, 2, 1, 1, 4, 4, 2, 2, 1, 1, 4, 4, 2, 1, 1, 1,
2, 2, 1, 1, 1, 1, 4, 2, 1, 2, 1, 1, 3, 3, 1, 1, 1, 1, 4, 3, 2,
2, 1, 1, 3, 2, 1, 1, 1, 1, 3, 2, 2, 2, 1, 1, 3, 3, 2, 2, 2, 1,
1, 1, 4, 2, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 3, 3, 4, 4, 3, 2, 1,
1, 3, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 3, 4,
1, 1, 1, 1, 4, 3, 2, 2, 2, 2, 1, 1, 3, 4, 1, 1, 1, 1, 4, 3, 2,
2, 1, 1, 3, 3, 2, 2, 1, 1, 3, 4, 2, 2, 1, 1, 2, 3, 2, 2, 1, 1,
1, 1, 3, 3, 1, 1), Visits = structure(c(2L, 2L, 1L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L,
1L, 1L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L,
2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L,
2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 2L, 2L), .Label = c("0", "1"), class = "factor"), WardEuc = c("4",
"4", "3", "3", "3", "3", "4", "4", "4", "3", "4", "4", "4", "4",
"3", "3", "4", "3", "4", "4", "3", "3", "3", "4", "3", "4", "4",
"4", "3", "3", "3", "3", "4", "4", "4", "4", "3", "4", "4", "3",
"4", "4", "4", "3", "3", "4", "4", "4", "4", "4", "3", "3", "4",
"4", "4", "4", "4", "4", "1", "1", "1", "1", "4", "4", "3", "3",
"4", "4", "4", "4", "4", "3", "4", "4", "3", "3", "3", "3", "4",
"4", "3", "3", "4", "4", "4", "4", "2", "2", "2", "2", "4", "4",
"3", "3", "3", "4", "2", "2", "2", "2", "2", "2", "4", "4", "3",
"3", "1", "1", "4", "4", "3", "3", "3", "4", "4", "4", "3", "3",
"4", "4", "4", "4", "3", "3", "3", "4", "4", "4", "3", "4", "3",
"3", "4", "3", "2", "2", "2", "2", "2", "2", "4", "4", "3", "3",
"3", "3", "4", "3", "4", "2", "4", "4", "4", "4", "4", "4", "4",
"3", "4", "3", "4", "4", "3", "4", "4", "4", "4", "3", "3", "3",
"3", "4", "4", "4", "3", "3", "3", "4", "3", "4", "4", "3", "3",
"3", "4", "4", "4", "4", "3", "4", "3", "4", "4", "4", "3", "4",
"3", "4", "4", "4", "3", "3", "3", "3", "4", "4", "3", "3", "4",
"4", "3", "4", "2", "2", "2", "2", "3", "3")), .Names = c("PC1",
"PC2", "Acute", "Visits", "WardEuc"), row.names = c(NA, -218L
), class = "data.frame")