0

我的问题似乎类似于This Thread但是,虽然我认为我正在遵循建议的方法,但我仍然收到 PicklingError。当我在本地运行我的进程而不发送到 IPython Cluster Engine 时,该函数工作正常。

我在 IPyhon 的 notebook 上使用 zipline,所以我首先创建了一个基于 zipline.TradingAlgorithm 的类

细胞 [ 1 ]

from IPython.parallel import Client
rc = Client()
lview = rc.load_balanced_view()

细胞 [ 2 ]

%%px --local  # This insures that the Class and modules exist on each engine
import zipline as zpl
import numpy as np

class Agent(zpl.TradingAlgorithm):  # must define initialize and handle_data methods
    def initialize(self):
        self.valueHistory = None
        pass

    def handle_data(self, data):
        for security in data.keys():
            ## Just randomly buy/sell/hold for each security
            coinflip = np.random.random()
            if coinflip < .25:
                self.order(security,100)
            elif coinflip > .75:
                self.order(security,-100)
        pass

细胞 [ 3 ]

from zipline.utils.factory import load_from_yahoo

start = '2013-04-01'
end   = '2013-06-01'
sidList = ['SPY','GOOG']
data = load_from_yahoo(stocks=sidList,start=start,end=end)

agentList = []
for i in range(3):
    agentList.append(Agent())

def testSystem(agent,data):
    results = agent.run(data)  #-- This is how the zipline based class is executed
    #-- next I'm just storing the final value of the test so I can plot later
    agent.valueHistory.append(results['portfolio_value'][len(results['portfolio_value'])-1])
    return agent

for i in range(10):
    tasks = []
    for agent in agentList:
        #agent = testSystem(agent,data)  ## On its own, this works!
        #-- To Test, uncomment the above line and comment out the next two 
        tasks.append(lview.apply_async(testSystem,agent,data))
    agentList = [ar.get() for ar in tasks]

for agent in agentList:
    plot(agent.valueHistory)

这是产生的错误:

PicklingError                             Traceback (most recent call last)/Library/Python/2.7/site-packages/IPython/kernel/zmq/serialize.pyc in serialize_object(obj, buffer_threshold, item_threshold)
    100         buffers.extend(_extract_buffers(cobj, buffer_threshold))
    101 
--> 102     buffers.insert(0, pickle.dumps(cobj,-1))
    103     return buffers
    104 
PicklingError: Can't pickle <type 'function'>: attribute lookup __builtin__.function failed

如果我使用以下内容覆盖 zipline.TradingAlgorithm 中的 run() 方法:

def run(self, data):
    return 1

尝试这样的事情...

def run(self, data):
    return zpl.TradingAlgorithm.run(self,data)

导致相同的 PicklingError。

然后传递给引擎的工作,但显然没有执行测试的胆量。由于 run 是 zipline.TradingAlgorithm 内部的一种方法,我不知道它所做的一切,我将如何确保它通过?

4

1 回答 1

0

看起来 zipline TradingAlgorithm 对象在运行后不可腌制:

import zipline as zpl

class Agent(zpl.TradingAlgorithm):  # must define initialize and handle_data methods
    def handle_data(self, data):
        pass

agent = Agent()
pickle.dumps(agent)[:32] # ok

agent.run(data)
pickle.dumps(agent)[:32] # fails

但这向我表明,您应该在引擎上创建代理,并且只来回传递数据/结果(理想情况下,根本不传递数据,或最多一次)。

最小化数据传输可能如下所示:

定义类:

%%px
import zipline as zpl
import numpy as np

class Agent(zpl.TradingAlgorithm):  # must define initialize and handle_data methods
    def initialize(self):
        self.valueHistory = []

    def handle_data(self, data):
        for security in data.keys():
            ## Just randomly buy/sell/hold for each security
            coinflip = np.random.random()
            if coinflip < .25:
                self.order(security,100)
            elif coinflip > .75:
                self.order(security,-100)

加载数据

%%px
from zipline.utils.factory import load_from_yahoo

start = '2013-04-01'
end   = '2013-06-01'
sidList = ['SPY','GOOG']

data = load_from_yahoo(stocks=sidList,start=start,end=end)
agent = Agent()

并运行代码:

def testSystem(agent, data):
    results = agent.run(data)  #-- This is how the zipline based class is executed
    #-- next I'm just storing the final value of the test so I can plot later
    agent.valueHistory.append(results['portfolio_value'][len(results['portfolio_value'])-1])

# create references to the remote agent / data objects
agent_ref = parallel.Reference('agent')
data_ref =  parallel.Reference('data')

tasks = []
for i in range(10):
    for j in range(len(rc)):
        tasks.append(lview.apply_async(testSystem, agent_ref, data_ref))
# wait for the tasks to complete
[ t.get() for t in tasks ]

并绘制结果,从不获取代理本身

%matplotlib inline
import matplotlib.pyplot as plt

for history in rc[:].apply_async(lambda : agent.valueHistory):
    plt.plot(history)

这与您共享的代码并不完全相同 - 三个代理在您的所有引擎上来回弹跳,而每个引擎都有代理。我对 zipline 的了解还不够,无法说出这对您是否有用。

于 2013-12-23T23:07:26.047 回答