3

我正在尝试使用 lmerTest 为我的固定效果设置 p 值。我有 4 个不同的随机截距,3 个交叉,一个嵌套:

test.reml <- lmerTest::lmer(y ~   s1 + min + cot +  min:cot + ge 
+ vis + dur + mo + nps + dist + st1 + st2 + di1 + s1:cot 
+ s1:min + s1:cot:min + s1:ge + s1:vis + s1:dur + s1:mo 
+ s1:nps + s1:dist + s1:st1 + s1:st2 + s1:di1 +  (1|Unique_key)
+ (s1-1|object) + (ns1-1|object) 
+ (1|region), bdr, REML=1)

对象被观察两次,两个度量之间的相关性通过对 Unique_key 的随机效应引入,Unique_key 是区域 j 中对象 i 的唯一标识符。每个物体都可以在任何区域被观察到。S1 是一个二元变量,如果在第一个时间段观察到,则取值 1 和 0。对于每个对象,第一个周期有一个随机截距,第二个周期有一个随机截距。ns1 实际上是一个二进制变量,它是 s1 和 s1 + ns1 = 1 对于每个观察值的补码。

我可以拟合模型并使用 summary() 获得估计值和 p 值:

    summary( test.reml)
Linear mixed model fit by REML ['merModLmerTest']
Formula: y ~   s1 + min + cot +  min:cot + ge 
    + vis + dur + mo + nps + dist + st1 + st2 + di1 + s1:cot 
    + s1:min + s1:cot:min + s1:ge + s1:vis + s1:dur + s1:mo 
    + s1:nps + s1:dist + s1:st1 + s1:st2 + s1:di1 +  (1|Unique_key)
    + (s1-1|object) + (ns1-1|object) 
    + (1|region), bdr, REML=1) 
   Data: bdr 

REML criterion at convergence: 204569.1 

Random effects:
 Groups     Name        Variance Std.Dev.
 Unique_key (Intercept) 0.2023   0.4497  
 object    s1           0.3528   0.5940  
 object.1  ns1         0.5954   0.7716  
 Region     (Intercept) 0.7563   0.8697  
 Residual               0.1795   0.4237  
Number of obs: 113396, groups: Unique_key , 58541; object, 1065; Region, 87

Fixed effects:
                    Estimate Std. Error t value Pr(>|t|)    
(Intercept)        6.7341569  0.2382673  28.263  < 2e-16 ***
s1                 0.7391924  0.2004413   3.688 0.000233 ***
min               -0.0067606  0.0171385  -0.394 0.694205    
cot                0.1235093  0.0353693   3.492 0.000499 ***
ge2               -0.1535452  0.0800998  -1.917 0.055525 .  
ge3               -0.2131246  0.0986559  -2.160 0.030982 *  
ge4               -0.1032694  0.1115603  -0.926 0.354830    
ge5               -0.1769347  0.1296558  -1.365 0.172663    
ge6                0.0117401  0.1115897   0.105 0.916231    
ge7               -0.2692483  0.1022565  -2.633 0.008589 ** 
vis2              -0.0928661  0.0607950  -1.528 0.126938    
vis3              -0.3026112  0.1246595  -2.428 0.015375 *  
dur2               0.1479195  0.0786369   1.881 0.060249 .  
dur3               0.1406340  0.0809379   1.738 0.082590 .  
dur4               0.2742243  0.0884301   3.101 0.001981 ** 
dur5               0.1946761  0.1065815   1.827 0.068059 .  
mo2               -0.1168591  0.1256017  -0.930 0.352386    
mo3               -0.0611162  0.1267657  -0.482 0.629824    
mo4               -0.2725720  0.1263740  -2.157 0.031248 *  
mo5               -0.6107000  0.1379264  -4.428 1.05e-05 ***
mo6               -0.3635142  0.1299799  -2.797 0.005260 ** 
mo7               -0.0899233  0.1275164  -0.705 0.480846    
mo8               -0.2349548  0.1253422  -1.875 0.061140 .  
mo9               -0.2624888  0.1263051  -2.078 0.037934 *  
mo10              -0.2882749  0.1244404  -2.317 0.020724 *  
mo11              -0.1702823  0.1356031  -1.256 0.209497    
mo12               0.1989155  0.1322339   1.504 0.132819    
nps                0.0278418  0.0010393  26.790  < 2e-16 ***
dist2              0.4065093  0.1118916   3.633 0.000294 ***
dist3              0.0155691  0.0906664   0.172 0.863693    
dist4             -0.2910960  0.1595805  -1.824 0.068424 .  
dist5             -0.1316553  0.0913394  -1.441 0.149782    
dist6              0.0477956  0.0995679   0.480 0.631308    
dist7              0.1383000  0.0981247   1.409 0.159011    
dist8             -0.3985620  0.0886316  -4.497 7.69e-06 ***
dist9             -0.2036683  0.0799584  -2.547 0.011005 *  
st11              -0.0258775  0.0591631  -0.437 0.661919    
st21               0.0089230  0.0573352   0.156 0.876356    
di11              -0.0910207  0.0838321  -1.086 0.277846    
min:cot            0.0066210  0.0006195  10.688  < 2e-16 ***
s1:cot            -0.1505670  0.0443186  -3.397 0.000694 ***
s1:min             0.0079478  0.0015051   5.280 1.29e-07 ***
s1:ge2             0.0329272  0.1007943   0.327 0.743948    
s1:ge3             0.2150927  0.1241590   1.732 0.083367 .  
s1:ge4             0.1786057  0.1404119   1.272 0.203526    
s1:ge5            -0.0422380  0.1631757  -0.259 0.795780    
s1:ge6             0.1372051  0.1404415   0.977 0.328717    
s1:ge7             0.1343314  0.1287059   1.044 0.296755    
s1:vis2            0.1354091  0.0765084   1.770 0.076913 .  
s1:vis3            0.2449180  0.1568745   1.561 0.118637    
s1:dur2           -0.0888179  0.0989573  -0.898 0.369547    
s1:dur3           -0.0532473  0.1018481  -0.523 0.601167    
s1:dur4           -0.1239068  0.1112907  -1.113 0.265696    
s1:dur5           -0.1191069  0.1341435  -0.888 0.374705    
s1:mo2            -0.1357615  0.1574365  -0.862 0.388618    
s1:mo3             0.0130976  0.1588743   0.082 0.934306    
s1:mo4             0.0343900  0.1579532   0.218 0.827669    
s1:mo5             0.2257241  0.1732449   1.303 0.192761    
s1:mo6             0.0500347  0.1628755   0.307 0.758728    
s1:mo7            -0.0451271  0.1596277  -0.283 0.777435    
s1:mo8            -0.0200467  0.1572383  -0.127 0.898564    
s1:mo9             0.0394005  0.1584268   0.249 0.803620    
s1:mo10            0.0641038  0.1562518   0.410 0.681662    
s1:mo11           -0.3136235  0.1703456  -1.841 0.065764 .  
s1:mo12           -0.7003775  0.1660455  -4.218 2.58e-05 ***
s1:nps            -0.0095428  0.0013077  -7.297 4.31e-13 ***
s1:dist2          -0.3867962  0.1407463  -2.748 0.006050 ** 
s1:dist3          -0.0516400  0.1140519  -0.453 0.650762    
s1:dist4          -0.0567491  0.2008542  -0.283 0.777562    
s1:dist5           0.0025780  0.1147143   0.022 0.982073    
s1:dist6          -0.1456445  0.1252219  -1.163 0.244940    
s1:dist7          -0.0452712  0.1234110  -0.367 0.713785    
s1:dist8           0.0546400  0.1114865   0.490 0.624117    
s1:dist9           0.0540697  0.1000415   0.540 0.588934    
s1:st11            0.0784027  0.0744677   1.053 0.292549    
s1:st21           -0.0394419  0.0721720  -0.546 0.584788    
s1:di11            0.0463040  0.1055326   0.439 0.660882    
s1:min:cot        -0.0012850  0.0006004  -2.140 0.032344 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

但是使用 anova() 我得到:

type3.bonmodele <- lmerTest::anova(test.reml, ddf="Satterthwaite")
Analysis of Variance Table
                  Df  Sum Sq Mean Sq   F value
s1                 1   7.385   7.385   41.1448
min                1   0.081   0.081    0.4536
cot                1  29.384  29.384  163.7026
ge                 6  25.198   4.200   23.3968
vis                2   0.464   0.232    1.2929
dur                4  22.763   5.691   31.7042
mo                11  15.581   1.416    7.8914
nps                1 234.535 234.535 1306.6487
dist               8  18.547   2.318   12.9162
st1                1   0.034   0.034    0.1879
st2                1   0.058   0.058    0.3220
di1                1   0.261   0.261    1.4549
min:cot            1  22.537  22.537  125.5611
s1:cot             1   9.146   9.146   50.9555
s1:min             1  18.383  18.383  102.4171
s1:ge              6   5.152   0.859    4.7843
s1:vis             2   1.698   0.849    4.7311
s1:dur             4   2.829   0.707    3.9404
s1:mo             11   8.157   0.742    4.1312
s1:nps             1  10.102  10.102   56.2803
s1:dist            8   2.233   0.279    1.5550
s1:st1             1   0.188   0.188    1.0481
s1:st2             1   0.046   0.046    0.2560
s1:di1             1   0.035   0.035    0.1927
s1:min:cot         1   0.822   0.822    4.5804

当我尝试删除三重交互时,anova() 函数返回 p 值...我还尝试拆分我的数据框并将模型拟合到一半的数据上,并且 anova() 可以很好地工作。

使用这些功能时没有警告,我也尝试更改 ddf 选项和方法,但似乎没有任何效果。

这是我的会话信息:

    R version 3.0.0 (2013-04-03)
Platform: x86_64-w64-mingw32/x64 (64-bit)

locale:
[1] LC_COLLATE=French_Canada.1252  LC_CTYPE=French_Canada.1252    LC_MONETARY=French_Canada.1252 LC_NUMERIC=C                  
[5] LC_TIME=French_Canada.1252    

attached base packages:
[1] parallel  splines   stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggplot2_0.9.3.1 snow_0.3-13     Snowball_0.0-10 xtable_1.7-1    lmerTest_2.0-0  pbkrtest_0.3-7  MASS_7.3-29    
 [8] papeR_0.3       gmodels_2.15.4  survival_2.37-4 nlme_3.1-111    car_2.0-19      lme4_1.1-1      Matrix_1.1-0   
[15] lattice_0.20-15

loaded via a namespace (and not attached):
 [1] bitops_1.0-6       caTools_1.16       cluster_1.14.4     colorspace_1.2-4   dichromat_2.0-0    digest_0.6.3      
 [7] gdata_2.13.2       gplots_2.12.1      grid_3.0.0         gtable_0.1.2       gtools_3.0.0       Hmisc_3.12-2      
[13] KernSmooth_2.23-10 labeling_0.2       minqa_1.2.1        munsell_0.4.2      nnet_7.3-7         numDeriv_2012.9-1 
[19] plyr_1.8           proto_0.3-10       RColorBrewer_1.0-5 RCurl_1.95-4.1     reshape2_1.2.2     rJava_0.9-4       
[25] ROAuth_0.9.3       rpart_4.1-3        scales_0.2.3       stringr_0.6.2      tools_3.0.0        twitteR_1.1.7 

我无法共享数据,但如果需要,我可以添加更多信息!我想对自由度使用 Satterthwaite 近似值,但如果您有任何其他获得 p 值的建议,请分享!非常感谢你!

4

1 回答 1

4

如果 lmerTest 中发生一些错误,则默认情况下会给出来自 lme4 的 anova。因此,在您的情况下,发生了一些错误,但是如果不对数据进行测试,就很难说是什么。可能是由于 grad 函数的简单方法,这是默认的。你可以试试:anova(test.reml, method.grad="Richardson")。否则就像我说的那样,如果不看例子就很难说...

亚历山德拉·库兹涅佐娃

于 2013-11-26T20:14:06.977 回答