我有一个包含响应变量 ADA 和自变量 LEV、ROA 和 ROAL 的数据集。数据称为 dt。我使用以下代码来获取潜在类的系数。
m1 <- stepFlexmix(ADA ~ LEV+ROA+ROAL,data=dt,control= list(verbose=0),
k=1:5,nrep= 10);
m1 <- getModel(m1, "BIC");
一切都很好,直到我从http://rss.acs.unt.edu/Rdoc/library/flexmix/html/flexmix.html阅读以下内容
model Object of FLXM of list of FLXM objects. Default is the object returned by calling FLXMRglm().
我认为默认模型调用是广义线性模型,而我对线性模型感兴趣。如何使用线性模型而不是 GLM?我搜索了很长一段时间,除了 http://www.inside-r.org/packages/cran/flexmix/docs/flexmix中的这个例子,我无法理解它:
data("NPreg", package = "flexmix")
## mixture of two linear regression models. Note that control parameters
## can be specified as named list and abbreviated if unique.
ex1 <- flexmix(yn~x+I(x^2), data=NPreg, k=2,
control=list(verb=5, iter=100))
ex1
summary(ex1)
plot(ex1)
## now we fit a model with one Gaussian response and one Poisson
## response. Note that the formulas inside the call to FLXMRglm are
## relative to the overall model formula.
ex2 <- flexmix(yn~x, data=NPreg, k=2,
model=list(FLXMRglm(yn~.+I(x^2)),
FLXMRglm(yp~., family="poisson")))
plot(ex2)
有人请让我知道如何使用线性回归而不是 GLM。还是我已经在使用 LM 并且因为“默认模型线”而感到困惑?请解释。谢谢。