0

我正在尝试使用有限差分近似方法对由高斯点源创建的一维波进行建模。下面是我的代码。

import matplotlib.pyplot as plt
import numpy as np

########Pre-Defining Values########
# spacial extent
lox = -1000
upx = 1000

# space sampling interval (km)
dx = 2.0
dx2inv = 1/(dx*dx)

# temporal extent
lot = 0
upt = 60

# time sampling interval (s)
dt = 0.5
dt2 = dt*dt

x = np.arange(lox,upx,dx)
t = np.arange(lot,upt,dt)

# pressure source location
psx = 0

# velocity (km/s)
v = 2.0
v2 = v*v

# density change location
pcl = 500

# density
p1 = 1
p1inv = 1/p1
p2 = 0.2
p2inv = 1/p2
pinv = np.zeros_like(x)
p = np.zeros_like(x)
for i in range(0,(int)((upx+pcl)/dx),1):
  pinv[i] = p1inv
  p[i] = p1
for i in range((int)((upx+pcl)/dx),len(pinv),1):
  pinv[i] = p2inv
  p[i] = p2


# waveform
f = np.zeros((len(t),len(x)))

# source
amp = 20 
mu = 0
sig = 10/dx
s = np.zeros_like(f)
s[0] = 1/(sig*np.sqrt(2*np.pi)) * np.exp(-(x-mu)*(x-mu)/2/sig/sig)
maxinv = 1/np.amax(s[0])
for i in range(1,len(s[0])):
  s[0][i] *= amp*maxinv


########Calculating Waveform########
h = np.zeros_like(f)
n1 = len(f)
n2 = len(f[0])

def fdx(i1):
  for i2 in range(1,n2-1):
    gi  = f[i1][i2  ]
    gi -= f[i1][i2-1]
    gi *= pinv[i2]
    h[i1][i2-1] -= gi
    h[i1][i2  ]  = gi

#f[0] = s[0]
fdx(0)
for i2 in range(0,n2):
  f[1][i2] = 2*f[0][i2] + (s[0][i2] - h[0][i2] * dx2inv) * p[i2] * v2 * dt2
for i1 in range(1,n1-1):
  fdx(i1)
  for i2 in range(0,n2):
    f[i1+1][i2] = 2*f[i1][i2] - f[i1-1][i2] + (s[i1][i2] - h[i1][i2] * dx2inv) * p[i2] * v2 * dt2

########Plotting########
plt.plot(x,f[50])

maxf = 1.5*amp
minf = -1.5*amp
plt.axis([lox,upx,minf,maxf])
plt.xlabel('x')
plt.ylabel('f(x,t)')

# vertical colored bars representing density
plt.axvspan(lox, pcl, facecolor='g', alpha=0.1)
plt.axvspan(pcl, upx, facecolor='g', alpha=0.2)

# text with density values
plt.text(pcl-0.2*upx,0.8*maxf,r'$\rho = $%s'%(p1),fontsize=15)
plt.text(pcl+0.05*upx,0.8*maxf,r'$\rho = $%s'%(p2),fontsize=15)

plt.show()

不幸的是,这段代码没有产生正确的结果(两个高斯脉冲从 x=0 左右传播)。相反,它会产生一个随时间增长的高斯脉冲。有谁知道我犯了什么错误?

非常感谢。

4

1 回答 1

1

自从您发布此内容以来已经有一段时间了,但是如果有任何帮助,这里有一个生成高斯脉冲的代码。我不擅长编程,所以如果这段代码令人困惑,我很抱歉。我对 EM 波(无单位)使用了 1D FDTD 波传播方程:

import numpy as np                      
import matplotlib.pyplot as plt
import matplotlib.animation as animation

#defining dimensions
xdim=720
time_tot = 500
xsource = xdim/2

#stability factor
S=1

#Speed of light
c=1
epsilon0=1
mu0=1

delta =1
deltat = S*delta/c

Ez = np.zeros(xdim)
Hy = np.zeros(xdim)

epsilon = epsilon0*np.ones(xdim)
mu = mu0*np.ones(xdim)

fig , axis = plt.subplots(1,1)
axis.set_xlim(len(Ez))
axis.set_ylim(-3,3)
axis.set_title("E Field")
line, = axis.plot([],[])

def init():
    line.set_data([],[])
    return line,

def animate(n, *args, **kwargs):
    Hy[0:xdim-1] = Hy[0:xdim-1]+(delta/(delta*mu[0:xdim-1]))*(Ez[1:xdim]-Ez[0:xdim-1])
    Ez[1:xdim]= Ez[1:xdim]+(delta/(delta*epsilon[1:xdim]))*(Hy[1:xdim]-Hy[0:xdim-1])
    Ez[xsource] = Ez[xsource] + 30.0*(1/np.sqrt(2*np.pi))*np.exp(-(n-80.0)**2/(100))
    ylims = axis.get_ylim()
    if (abs(np.amax(Ez))>ylims[1]):
        axis.set_ylim(-(np.amax(Ez)+2),np.amax(Ez)+2)
    line.set_data(np.arange(len(Ez)),Ez)
    return line,

ani = animation.FuncAnimation(fig, animate, init_func=init, frames=(time_tot), interval=10, blit=False, repeat =False)
fig.show()

我希望它有所帮助。:)

于 2014-10-02T09:44:27.960 回答