这是我对 Erathostenes 筛的实现:
#include <string>
#include <iostream>
using namespace std;
const int k = 110000; //you can change this constant to whatever maximum int you would need to calculate
long int p[k]; //here we would store Sieve of Erathostenes from 2 to k
long int j;
void init_prime() //in here we set our array
{
for (int i = 2; i <= k; i++)
{
if (p[i] == 0)
{
j = i;
while (j <= k)
{
p[j] = i;
j = j + i;
}
}
}
/*for (int i = 2; i <= k; i++)
cout << p[i] << endl;*/ //if you uncomment this you can see the output of initialization...
}
string prime(int first, int last) //this is example of how you can use initialized array
{
string result = "";
for (int i = first; i <= last; i++)
{
if (p[i] == i)
result = result + to_str(i) + "";
}
return result;
}
int main() //I done this code some time ago for one contest, when first input was number of cases and then actual input came in so nocases means "number of cases"...
{
int nocases, first, last;
init_prime();
cin >> nocases;
for (int i = 1; i <= nocases; i++)
{
cin >> first >> last;
cout << prime(first, last);
}
return 0;
}
您也可以使用 Erathostenes 筛来计算阶乘。这实际上是我那天能够创建的筛子的最快解释(它可以在不到一秒的时间内计算出这个范围的筛子)