据我了解,numpy.sparse.csr_sparse.dot(other)
确实从右侧other
乘以我的稀疏矩阵:
A = numpy.sparse.csr_sparse(something)
B = numpy.matrix(something)
C = A.dot(B) # C = A*B
如何在B*A
不失去将矩阵保存为稀疏矩阵(即.todense()
等)的好处的情况下对这两个矩阵进行通勤?
据我了解,numpy.sparse.csr_sparse.dot(other)
确实从右侧other
乘以我的稀疏矩阵:
A = numpy.sparse.csr_sparse(something)
B = numpy.matrix(something)
C = A.dot(B) # C = A*B
如何在B*A
不失去将矩阵保存为稀疏矩阵(即.todense()
等)的好处的情况下对这两个矩阵进行通勤?