The problem is currently solved. In case some one wants to see the colored fractal, the code is here.
Here is the previous problem:
Nonetheless the algorithm is straight forward, I seems to have a small error (some fractals are drawing correctly and some are not). You can quickly check it in jsFiddle that c = -1, 1/4 the fractal is drawing correctly but if I will take c = i; the image is totally wrong.
Here is implementation.
HTML
<canvas id="a" width="400" height="400"></canvas>
JS
function point(pos, canvas){
canvas.fillRect(pos[0], pos[1], 1, 1); // there is no drawpoint in JS, so I simulate it
}
function conversion(x, y, width, R){ // transformation from canvas coordinates to XY plane
var m = R / width;
var x1 = m * (2 * x - width);
var y2 = m * (width - 2 * y);
return [x1, y2];
}
function f(z, c){ // calculate the value of the function with complex arguments.
return [z[0]*z[0] - z[1] * z[1] + c[0], 2 * z[0] * z[1] + c[1]];
}
function abs(z){ // absolute value of a complex number
return Math.sqrt(z[0]*z[0] + z[1]*z[1]);
}
function init(){
var length = 400,
width = 400,
c = [-1, 0], // all complex number are in the form of [x, y] which means x + i*y
maxIterate = 100,
R = (1 + Math.sqrt(1+4*abs(c))) / 2,
z;
var canvas = document.getElementById('a').getContext("2d");
var flag;
for (var x = 0; x < width; x++){
for (var y = 0; y < length; y++){ // for every point in the canvas plane
flag = true;
z = conversion(x, y, width, R); // convert it to XY plane
for (var i = 0; i < maxIterate; i++){ // I know I can change it to while and remove this flag.
z = f(z, c);
if (abs(z) > R){ // if during every one of the iterations we have value bigger then R, do not draw this point.
flag = false;
break;
}
}
// if the
if (flag) point([x, y], canvas);
}
}
}
Also it took me few minutes to write it, I spent much more time trying to find why does not it work for all the cases. Any idea where I screwed up?