我必须说明以下是否是常规集合。这些是我的答案,我想知道我是否正确并获得关于我的推理的额外输入。另外,我想在不使用抽水引理的情况下直观地使这些合理化,我被告知对于以下任何一个都不太难。
我只需要正式在底部显示问题。
a. {(a^n)(b^m) | n!=m}
b. {xcx | x is in {a,b}*}
c. {xcy | x,y is in {a,b}*}
d. {(a^n)(b^n+481) | n >= 0}
e. {(a^n)(b^m) | n>=m and m<= 481}
f. {(a^n)(b^m) | n>=m and m>= 481}
h. {(a^n)(b^n)(c^n) | n>=0}
a. Not regular. This would imply that {(a^n)(b^n) | n>=0} is regular, which isn't true either by the closure properties for regular sets.
b. For both b and c, I don't think I am conceptualizing it correctly. Since x can be any arbitrary string of a's or b's, I would say that both parts b and c are not regular. But I don't think that this is correct.
c. See above.
d. Not regular. From the same reasoning from a. Adding a constant really means nothing since n is unbounded positively.
e. Unsure.
f. Unsure.
h. Not regular from the same reasoning as a.
最后我必须正式证明不存在 {(a^n)(b^n) | 的无限子集。n>=0} 使得子集是规则的。
这可以在没有抽水引理的情况下以简单的方式完成吗?由于我对常规套路没有很好的掌握,我还没有尝试过。