我很难证明斐波那契的“坏”版本是 O(2^n)。IE。给定函数
int fib(int x)
{
if ( x == 1 || x == 2 )
{
return 1;
}
else
{
return ( f( x - 1 ) + f( x - 2) );
}
}
我可以得到帮助来证明这是 O(2^n)。
Let's start off by writing a recurrence relation for the runtime:
T(1) = 1
T(2) = 1
T(n+2) = T(n) + T(n + 1) + 1
Now, let's take a guess that
T(n) ≤ 2n
If we try to prove this by induction, the base cases check out:
T(1) = 1 ≤ 2 = 21
T(2) = 1 ≤ 4 = 22
Then, in the inductive step, we see this:
T(n + 2) = T(n) + T(n + 1) + 1
≤ 2n + 2n+1 + 1
< 2n+1 + 2n+1
= 2n+2
Therefore, by induction, we can conclude that T(n) ≤ 2n for any n, and therefore T(n) = O(2n).
With a more precise analysis, you can prove that T(n) = 2Fn - 1, where Fn is the nth Fibonacci number. This proves, more accurately, that T(n) = Θ(φn), where φ is the Golden Ratio, which is approximately 1.61. Note that φn = o(2n) (using little-o notation), so this is a much better bound.
Hope this helps!
Try manually doing a few test cases like f(5)
and take note of how many times the method f()
is called.
A fat hint would be to notice that every time the method f()
is called (except for x is 1 or 2), f()
is called twice. Each of those call f()
two more times each, and so on...
使用递归树方法:
T(n)
↙ ↘
n-1 n – 2
↙ ↘ ↙ ↘
N – 2 n – 3 n – 3 n - 4
如果您以这种方式完成递归树,则每个树级别都被视为对 fib(x - 1) fib(x - 2) 的调用,您将在 x = 1 或 x = 2(基本情况)时停止 .... 这个tree 仅显示递归树的三个级别。要解决这棵树,您需要这些重要信息: 1- 树的高度。2-每个级别完成了多少工作。这棵树的高度是 2^n,每个级别的工作量是 O(1),那么这个递归的顺序是高度 * 每个级别的工作量 = 2^n * 1 = O(2^n)
实际上有一个非常简单的证明,对 的调用总数f
将是2Fib(n)-1
,其中Fib(n)
是第 n 个斐波那契数。它是这样的:
f
形成二叉树的一组调用,其中每个调用要么是一个叶子(对于 x=1 或 x=2),要么调用产生两个子调用(对于 x>2)。Fib(n)
总叶子。L-1
,其中L
是叶子的数量,所以这棵树中的节点总数是2L-1
。这表明运行时间(以总调用次数衡量f
)为
T(n)=2Fib(n)-1=O(Fib(n))
并且因为Fib(n)=Θ(φ^n)
,黄金比例φ
在哪里
Φ=(1+sqrt{5})/2 = 1.618...
这证明了T(n) = Θ(1.618...^n) = O(n)
。