这称为将数据从“宽”格式“重塑”为“长”格式。在基础 R 中,一个工具是reshape
,但您首先需要一个“id”变量:
reshape(df, direction = "long", varying = names(df), sep = "_")
# time A B id
# 1.1 1 1 10 1
# 2.1 1 2 11 2
# 3.1 1 3 12 3
# 1.2 2 4 13 1
# 2.2 2 5 14 2
# 3.2 2 6 15 3
# 1.3 3 7 16 1
# 2.3 3 8 17 2
# 3.3 3 9 18 3
如果需要,您可以删除其他列。
为了好玩,这是另一种方法,使用“reshape2”包(从您的原始示例数据开始):
library(reshape2)
dfL <- melt(as.matrix(df))
dfL <- cbind(dfL, colsplit(dfL$Var2, "_", c("Factor", "Individual")))
dcast(dfL, Individual + Var1 ~ Factor, value.var="value")
# Individual Var1 A B
# 1 1 1 1 10
# 2 1 2 2 11
# 3 1 3 3 12
# 4 2 1 4 13
# 5 2 2 5 14
# 6 2 3 6 15
# 7 3 1 7 16
# 8 3 2 8 17
# 9 3 3 9 18
如果你生活在最前沿,“data.table”版本 1.8.11 现在已经实现了“melt”和“dcast”。我还没有玩太多,但它也很简单。同样,与我迄今为止提供的所有解决方案一样,需要一个“id”。
library(reshape2)
library(data.table)
packageVersion("data.table") ## Must be at least 1.8.11 to work
# [1] ‘1.8.11’
DT <- data.table(cbind(id = sequence(nrow(df)), df))
DTL <- melt(DT, id.vars="id")
DTL[, c("Fac", "Ind") := colsplit(variable, "_", c("Fac", "Ind"))]
dcast.data.table(DTL, Ind + id ~ Fac)
# Ind id A B
# 1: 1 1 1 10
# 2: 1 2 2 11
# 3: 1 3 3 12
# 4: 2 1 4 13
# 5: 2 2 5 14
# 6: 2 3 6 15
# 7: 3 1 7 16
# 8: 3 2 8 17
# 9: 3 3 9 18
更新
另一种选择是merged.stack
从我的“splitstackshape”包中使用。如果您也使用它,它会很好地工作as.data.table(df, keep.rownames = TRUE)
,这将创建与data.table(cbind(id = sequence(nrow(df)), df))
“data.table”方法中的步骤等效的步骤。
library(splitstackshape)
merged.stack(as.data.table(df, keep.rownames = TRUE),
var.stubs = c("A", "B"), sep = "_")
# rn .time_1 A B
# 1: 1 1 1 10
# 2: 1 2 4 13
# 3: 1 3 7 16
# 4: 2 1 2 11
# 5: 2 2 5 14
# 6: 2 3 8 17
# 7: 3 1 3 12
# 8: 3 2 6 15
# 9: 3 3 9 18
为了公平/完整,这里有一种“tidyr”+“dplyr”的方法。
library(tidyr)
library(dplyr)
df %>%
gather(var, value, A_1:B_3) %>%
separate(var, c("var", "time")) %>%
group_by(var, time) %>%
mutate(grp = sequence(n())) %>%
ungroup() %>%
spread(var, value)
# Source: local data frame [9 x 4]
#
# time grp A B
# 1 1 1 1 10
# 2 1 2 2 11
# 3 1 3 3 12
# 4 2 1 4 13
# 5 2 2 5 14
# 6 2 3 6 15
# 7 3 1 7 16
# 8 3 2 8 17
# 9 3 3 9 18