Is there any relation between number of neurons and ability of Hopfield network to recognize patterns?
I write neural network program in C# to recognize patterns with Hopfield network. My network has 64 neurons. When I train network for 2 patterns, every things work nice and easy, but when I train network for more patterns, Hopfield can't find answer!
So, according to my code, how can I use Hopfield network to learn more patterns?
Should I make changes in this code?
There is my train()
function:
public void Train(bool[,] pattern)
{
//N is number of rows in our square matrix
//Convert input pattern to bipolar
int[,] PatternBipolar = new int[N, N];
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
{
if (pattern[i, j] == true)
{
PatternBipolar[i, j] = 1;
}
else
{
PatternBipolar[i, j] = -1;
}
}
//convert to row matrix
int count1 = 0;
int[] RowMatrix = new int[(int)Math.Pow(N, 2)];
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++)
{
RowMatrix[count1] = PatternBipolar[i, j];
count1++;
}
//convert to column matrix
int count2 = 0;
int[] ColMatrix = new int[(int)Math.Pow(N, 2)];
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++)
{
ColMatrix[count2] = PatternBipolar[i, j];
count2++;
}
//multiplication
int[,] MultipliedMatrix = new int[(int)Math.Pow(N, 2), (int)Math.Pow(N, 2)];
for (int i = 0; i < (int)Math.Pow(N, 2); i++)
for (int j = 0; j < (int)Math.Pow(N, 2); j++)
{
MultipliedMatrix[i, j] = ColMatrix[i] * RowMatrix[j];
}
//cells in the northwest diagonal get set to zero
for (int i = 0; i < (int)Math.Pow(N, 2); i++)
MultipliedMatrix[i, i] = 0;
// WightMatrix + MultipliedMatrix
for (int i = 0; i < (int)Math.Pow(N, 2); i++)
for (int j = 0; j < (int)Math.Pow(N, 2); j++)
{
WeightMatrix[i, j] += MultipliedMatrix[i, j];
}
And there is Present()
function (this function is used to return answer for a given pattern):
public void Present(bool[,] Pattern)
{
int[] output = new int[(int)(int)Math.Pow(N, 2)];
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++)
{
OutputShowMatrix[i, j] = 0;
}
//convert bool to binary
int[] PatternBinary = new int[(int)Math.Pow(N, 2)];
int count = 0;
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++)
{
if (Pattern[i, j] == true)
{
PatternBinary[count] = 1;
}
else
{
PatternBinary[count] = 0;
}
count++;
}
count = 0;
int activation = 0;
for (int j = 0; j < (int)Math.Pow(N, 2); j++)
{
for (int i = 0; i < (int)Math.Pow(N, 2); i++)
{
activation = activation + (PatternBinary[i] * WeightMatrix[i, j]);
}
if (activation > 0)
{
output[count] = 1;
}
else
{
output[count] = 0;
}
count++;
activation = 0;
}
count = 0;
for (int j = 0; j < N; j++)
for (int i = 0; i < N; i++)
{
OutputShowMatrix[i, j] = output[count++];
}
In below images I trained Hopfield for characters A and P and when input patterns are like A or P, network recognize them in true way
Then I train it for character C:
This is where every things go wrong!
Now if I enter pattern like C, this issue happen:
And if enter pattern like A, see what happen:
And if train more patterns, whole of grid become black!