我有一个关于 python 的问题fftconvolve
。在我目前的研究中,我被要求计算两个函数之间的一些卷积。为此,我使用傅立叶变换(我使用numpy.fft
并对其进行归一化)进行计算。问题是,如果我想使用fftconvolve
包进行比较,它无法给出正确的结果。这是我的代码:
#!/usr/bin/python
import numpy as np
from scipy.signal import fftconvolve , convolve
def FFT(array , sign):
if sign==1:
return np.fft.fftshift(np.fft.fft(np.fft.fftshift(array))) * dw / (2.0 * np.pi)
elif sign==-1:
return np.fft.fftshift(np.fft.ifft(np.fft.fftshift(array))) * dt * len(array)
def convolve_arrays(array1,array2,sign):
sign = int(sign)
temp1 = FFT(array1 , sign,)
temp2 = FFT(array2 , sign,)
temp3 = np.multiply(temp1 , temp2)
return FFT(temp3 , -1 * sign) / (2. * np.pi)
""" EXAMPLE """
dt = .1
N = 2**17
t_max = N * dt / 2
time = dt * np.arange(-N / 2 , N / 2 , 1)
dw = 2. * np.pi / (N * dt)
w_max = N * dw / 2.
w = dw * np.arange(-N / 2 , N / 2 , 1)
eta_fourier = 1e-10
Gamma = 1.
epsilon = .5
omega = .5
G = zeros(N , complex)
G[:] = 1. / (w[:] - epsilon + 1j * eta_fourier)
D = zeros(N , complex)
D[:] = 1. / (w[:] - omega + 1j * eta_fourier) - 1. / (w[:] + omega + 1j * eta_fourier)
H = convolve_arrays(D , G , 1)
J = fftconvolve(D , G , mode = 'same') * np.pi / (2. * N)
如果您绘制 的实部/虚部H
,J
您会看到w
轴的变化,而且我必须将J
的结果相乘才能以某种方式接近(但仍然不是)正确的结果。
有什么建议么?
谢谢!