我有一个算法,我发现它的运行时复杂度遵循以下公式:
[log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2
对数的基数为 2。
我如何从这个公式中找出 Θ/Ο 算法复杂度是多少?
我有一个算法,我发现它的运行时复杂度遵循以下公式:
[log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2
对数的基数为 2。
我如何从这个公式中找出 Θ/Ο 算法复杂度是多少?
对于上限,您可以推断为 log(n!) = O(nlog(n))
[log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2 < [log(n)]^2 + ... + [log(n)]^2
= n[log(n)]^2
[log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2 = O( n[log(n)]^2 )
为了证明下界,需要证明给定的总和 >= n[log(n)]^2 的常数倍
从总和中删除前半部分
[log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2 >= [log(n/2)]^2 + [log(n/2 + 1)]^2 + [log(3)]^2 + ....... + [log(n)]^2
将每一项替换为 log(n/2) ^ 2
[log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2 >= (n/2) * [log(n/2)]^2
下限 =(n/2) * [log(n) - 1] ^ 2
我们可以证明log(n) - 1 >= (1/2) * log(n)
因此下界 =(n/8) * [log(n)] ^ 2
和上界 = n * [log(n)] ^ 2
所以 Θ([log(1)]^2 + [log(2)]^2 + [log(3)]^2 + ....... + [log(n)]^2) = n * [log(n)] ^ 2