问题的基本部分是关于序列化和反序列化集合。
在不控制服务器和客户端的编译器和体系结构的情况下,发送原始结构通常是不安全的,因为系统之间的字节表示可能不同。虽然在这种特定情况下编译器和架构是相同的,但它们#pragma pack(1)
并不相关,因为WAVEFORM_DATA_STRUCT
它没有作为原始内存写入套接字。write
相反,为收集操作提供了多个内存缓冲区。
boost::array<boost::asio::mutable_buffer,2> buffer = {{
boost::asio::buffer(&waveformPacket->numWaveforms, ...), // &numWaveforms
boost::asio::buffer(waveformPacket->waveforms) // &waveforms[0]
}};
有各种工具可以帮助序列化数据结构,例如Protocol Buffers。
下面的代码将演示序列化网络通信数据结构的基础知识。为了简化代码和解释,我选择专注于序列化和反序列化,而不是从套接字写入和读取。本节下方的另一个示例将展示更多原始方法,它假定相同的编译器和体系结构。
从基本foo
类型开始:
struct foo
{
char a;
char b;
boost::uint16_t c;
};
可以确定数据可以打包成总共4个字节。以下是一种可能的电线表示:
0 8 16 24 32
|--------+--------+--------+--------|
| a | b | c |
'--------+--------+--------+--------'
确定线路表示后,可以使用两个函数将foo
对象序列化(保存)到缓冲区,另一个函数可用于foo
从缓冲区反序列化(加载)。由于foo.c
大于一个字节,函数还需要考虑字节序。我选择在 Boost.Asio 详细命名空间中使用字节序字节交换函数来实现某些平台中立性。
/// @brief Serialize foo into a network-byte-order buffer.
void serialize(const foo& foo, unsigned char* buffer)
{
buffer[0] = foo.a;
buffer[1] = foo.b;
// Handle endianness.
using ::boost::asio::detail::socket_ops::host_to_network_short;
boost::uint16_t c = host_to_network_short(foo.c);
std::memcpy(&buffer[2], &c, sizeof c);
}
/// @brief Deserialize foo from a network-byte-order buffer.
void deserialize(foo& foo, const unsigned char* buffer)
{
foo.a = buffer[0];
foo.b = buffer[1];
// Handle endianness.
using ::boost::asio::detail::socket_ops::network_to_host_short;
boost::uint16_t c;
std::memcpy(&c, &buffer[2], sizeof c);
foo.c = network_to_host_short(c);
}
为 完成序列化和反序列化后foo
,下一步是处理foo
对象集合。在编写代码之前,需要确定线路表示。在这种情况下,我决定foo
用 32 位计数字段作为元素序列的前缀。
0 8 16 24 32
|--------+--------+--------+--------|
| count of foo elements [n] |
|--------+--------+--------+--------|
| serialized foo [0] |
|--------+--------+--------+--------|
| serialized foo [1] |
|--------+--------+--------+--------|
| ... |
|--------+--------+--------+--------|
| serialized foo [n-1] |
'--------+--------+--------+--------'
再一次,可以引入两个辅助函数来序列化和反序列化foo
对象集合,并且还需要考虑计数字段的字节顺序。
/// @brief Serialize a collection of foos into a network-byte-order buffer.
template <typename Foos>
std::vector<unsigned char> serialize(const Foos& foos)
{
boost::uint32_t count = foos.size();
// Allocate a buffer large enough to store:
// - Count of foo elements.
// - Each serialized foo object.
std::vector<unsigned char> buffer(
sizeof count + // count
foo_packed_size * count); // serialize foo objects
// Handle endianness for size.
using ::boost::asio::detail::socket_ops::host_to_network_long;
count = host_to_network_long(count);
// Pack size into buffer.
unsigned char* current = &buffer[0];
std::memcpy(current, &count, sizeof count);
current += sizeof count; // Adjust position.
// Pack each foo into the buffer.
BOOST_FOREACH(const foo& foo, foos)
{
serialize(foo, current);
current += foo_packed_size; // Adjust position.
}
return buffer;
};
/// @brief Deserialize a buffer into a collection of foo objects.
std::vector<foo> deserialize(const std::vector<unsigned char>& buffer)
{
const unsigned char* current = &buffer[0];
// Extract the count of elements from the buffer.
boost::uint32_t count;
std::memcpy(&count, current, sizeof count);
current += sizeof count;
// Handle endianness.
using ::boost::asio::detail::socket_ops::network_to_host_long;
count = network_to_host_long(count);
// With the count extracted, create the appropriate sized collection.
std::vector<foo> foos(count);
// Deserialize each foo from the buffer.
BOOST_FOREACH(foo& foo, foos)
{
deserialize(foo, current);
current += foo_packed_size;
}
return foos;
};
这是完整的示例代码:
#include <iostream>
#include <vector>
#include <boost/asio.hpp>
#include <boost/asio/detail/socket_ops.hpp> // endian functions
#include <boost/cstdint.hpp>
#include <boost/foreach.hpp>
#include <boost/tuple/tuple.hpp> // boost::tie
#include <boost/tuple/tuple_comparison.hpp> // operator== for boost::tuple
/// @brief Mockup type.
struct foo
{
char a;
char b;
boost::uint16_t c;
};
/// @brief Equality check for foo objects.
bool operator==(const foo& lhs, const foo& rhs)
{
return boost::tie(lhs.a, lhs.b, lhs.c) ==
boost::tie(rhs.a, rhs.b, rhs.c);
}
/// @brief Calculated byte packed size for foo.
///
/// @note char + char + uint16 = 1 + 1 + 2 = 4
static const std::size_t foo_packed_size = 4;
/// @brief Serialize foo into a network-byte-order buffer.
///
/// @detail Data is packed as follows:
///
/// 0 8 16 24 32
/// |--------+--------+--------+--------|
/// | a | b | c |
/// '--------+--------+--------+--------'
void serialize(const foo& foo, unsigned char* buffer)
{
buffer[0] = foo.a;
buffer[1] = foo.b;
// Handle endianness.
using ::boost::asio::detail::socket_ops::host_to_network_short;
boost::uint16_t c = host_to_network_short(foo.c);
std::memcpy(&buffer[2], &c, sizeof c);
}
/// @brief Deserialize foo from a network-byte-order buffer.
void deserialize(foo& foo, const unsigned char* buffer)
{
foo.a = buffer[0];
foo.b = buffer[1];
// Handle endianness.
using ::boost::asio::detail::socket_ops::network_to_host_short;
boost::uint16_t c;
std::memcpy(&c, &buffer[2], sizeof c);
foo.c = network_to_host_short(c);
}
/// @brief Serialize a collection of foos into a network-byte-order buffer.
///
/// @detail Data is packed as follows:
///
/// 0 8 16 24 32
/// |--------+--------+--------+--------|
/// | count of foo elements [n] |
/// |--------+--------+--------+--------|
/// | serialized foo [0] |
/// |--------+--------+--------+--------|
/// | serialized foo [1] |
/// |--------+--------+--------+--------|
/// | ... |
/// |--------+--------+--------+--------|
/// | serialized foo [n-1] |
/// '--------+--------+--------+--------'
template <typename Foos>
std::vector<unsigned char> serialize(const Foos& foos)
{
boost::uint32_t count = foos.size();
// Allocate a buffer large enough to store:
// - Count of foo elements.
// - Each serialized foo object.
std::vector<unsigned char> buffer(
sizeof count + // count
foo_packed_size * count); // serialize foo objects
// Handle endianness for size.
using ::boost::asio::detail::socket_ops::host_to_network_long;
count = host_to_network_long(count);
// Pack size into buffer.
unsigned char* current = &buffer[0];
std::memcpy(current, &count, sizeof count);
current += sizeof count; // Adjust position.
// Pack each foo into the buffer.
BOOST_FOREACH(const foo& foo, foos)
{
serialize(foo, current);
current += foo_packed_size; // Adjust position.
}
return buffer;
};
/// @brief Deserialize a buffer into a collection of foo objects.
std::vector<foo> deserialize(const std::vector<unsigned char>& buffer)
{
const unsigned char* current = &buffer[0];
// Extract the count of elements from the buffer.
boost::uint32_t count;
std::memcpy(&count, current, sizeof count);
current += sizeof count;
// Handle endianness.
using ::boost::asio::detail::socket_ops::network_to_host_long;
count = network_to_host_long(count);
// With the count extracted, create the appropriate sized collection.
std::vector<foo> foos(count);
// Deserialize each foo from the buffer.
BOOST_FOREACH(foo& foo, foos)
{
deserialize(foo, current);
current += foo_packed_size;
}
return foos;
};
int main()
{
// Create a collection of foo objects with pre populated data.
std::vector<foo> foos_expected(5);
char a = 'a',
b = 'A';
boost::uint16_t c = 100;
// Populate each element.
BOOST_FOREACH(foo& foo, foos_expected)
{
foo.a = a++;
foo.b = b++;
foo.c = c++;
}
// Serialize the collection into a buffer.
std::vector<unsigned char> buffer = serialize(foos_expected);
// Deserialize the buffer back into a collection.
std::vector<foo> foos_actual = deserialize(buffer);
// Compare the two.
std::cout << (foos_expected == foos_actual) << std::endl; // expect 1
// Negative test.
foos_expected[0].c = 0;
std::cout << (foos_expected == foos_actual) << std::endl; // expect 0
}
这会产生 和 的预期1
结果0
。
如果使用相同的编译器和架构,则可以将foo
原始缓冲区中的连续对象序列重新解释为对象数组,并使用复制构造函数进行foo
填充。std::vector<foo>
例如:
// Create and populate a contiguous sequence of foo objects.
std::vector<foo> foo1;
populate(foo1);
// Get a handle to the contiguous memory block.
const char* buffer = reinterpret_cast<const char*>(&foo1[0]);
// Populate a new vector via iterator constructor.
const foo* begin = reinterpret_cast<const foo*>(buffer);
std::vector<foo> foos2(begin, begin + foos1.size());
最后,foo1
应该等于foo2
。中的foo
对象foo2
将从.foo
拥有的内存中重新解释的对象复制构造foo1
。
#include <iostream>
#include <vector>
#include <boost/cstdint.hpp>
#include <boost/foreach.hpp>
#include <boost/tuple/tuple.hpp> // boost::tie
#include <boost/tuple/tuple_comparison.hpp> // operator== for boost::tuple
/// @brief Mockup type.
struct foo
{
char a;
char b;
boost::uint16_t c;
};
/// @brief Equality check for foo objects.
bool operator==(const foo& lhs, const foo& rhs)
{
return boost::tie(lhs.a, lhs.b, lhs.c) ==
boost::tie(rhs.a, rhs.b, rhs.c);
}
int main()
{
// Create a collection of foo objects with pre populated data.
std::vector<foo> foos_expected(5);
char a = 'a',
b = 'A';
boost::uint16_t c = 100;
// Populate each element.
BOOST_FOREACH(foo& foo, foos_expected)
{
foo.a = a++;
foo.b = b++;
foo.c = c++;
}
// Treat the collection as a raw buffer.
const char* buffer =
reinterpret_cast<const char*>(&foos_expected[0]);
// Populate a new vector.
const foo* begin = reinterpret_cast<const foo*>(buffer);
std::vector<foo> foos_actual(begin, begin + foos_expected.size());
// Compare the two.
std::cout << (foos_expected == foos_actual) << std::endl;
// Negative test.
foos_expected[0].c = 0;
std::cout << (foos_expected == foos_actual) << std::endl;
}
与其他方法一样,这会产生 和 的预期1
结果0
。