你已经知道你的特征值是(0, a, b, c, ..., 1). 让我重命名您的参数,使特征值为(0, e1, e2, e3, ..., 1). 要找出与 eigenvalue(v0, v1, v2, ..., v(n-1))对应的特征向量ej,您必须求解方程组:
v1                    = v0*ej
v1*e1 + v2*(1-e1)     = v1*ej
v2*e2 + v3*(1-e2)     = v2*ej
...
vj*ej + v(j+1)*(1-ej) = vj*ej
...
v(n-1)                = v(n-1)*ej
或多或少清楚的是,如果您的所有人ei都是不同的,并且没有一个等于0或1,那么解决方案始终是明确定义的,并且在处理 时ej,生成的特征向量的第一个j分量非零,其余分量为零. 这保证了没有特征向量是其他特征向量的线性组合,因此特征向量矩阵是可逆的。
当您的一些eiis 0, or 1, or 重复时,问题就来了。我无法提出证明,但尝试使用以下代码似乎你应该只担心你的任何两个ei是相等和不同的1:
>>> def make_mat(values):
...     n = len(values) + 2
...     main_diag = np.concatenate(([0], values, [1]))
...     up_diag = 1 - np.concatenate(([0], values))
...     return np.diag(main_diag) + np.diag(up_diag, k=1)
>>> make_mat([4,5,6])
array([[ 0,  1,  0,  0,  0],
       [ 0,  4, -3,  0,  0],
       [ 0,  0,  5, -4,  0],
       [ 0,  0,  0,  6, -5],
       [ 0,  0,  0,  0,  1]])
>>> a, b = np.linalg.eig(make_mat([4,5,6]))
>>> a
array([ 0.,  4.,  5.,  6.,  1.])
>>> b
array([[ 1.        ,  0.24253563, -0.18641093,  0.13608276,  0.4472136 ],
       [ 0.        ,  0.9701425 , -0.93205465,  0.81649658,  0.4472136 ],
       [ 0.        ,  0.        ,  0.31068488, -0.54433105,  0.4472136 ],
       [ 0.        ,  0.        ,  0.        ,  0.13608276,  0.4472136 ],
       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.4472136 ]])
现在对于一些测试用例:
>>> a, b = np.linalg.eig(make_mat([1,0,3])) # having a 0 or 1 is OK
>>> b
array([[ 1.        ,  0.70710678,  0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.70710678,  0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  1.        ,  0.31622777,  0.57735027],
       [ 0.        ,  0.        ,  0.        ,  0.9486833 ,  0.57735027],
       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.57735027]])
>>> a, b = np.linalg.eig(make_mat([1,1,3])) # repeating 1 is OK
>>> b
array([[ 1.        ,  0.70710678,  0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.70710678,  0.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  1.        ,  0.        ,  0.        ],
       [ 0.        ,  0.        ,  0.        ,  1.        ,  0.70710678],
       [ 0.        ,  0.        ,  0.        ,  0.        ,  0.70710678]])
>>> a, b = np.linalg.eig(make_mat([0,0,3])) # repeating 0 is not OK
>>> np.round(b, 3)
array([[ 1.   , -1.   ,  1.   ,  0.035,  0.447],
       [ 0.   ,  0.   ,  0.   ,  0.105,  0.447],
       [ 0.   ,  0.   ,  0.   ,  0.314,  0.447],
       [ 0.   ,  0.   ,  0.   ,  0.943,  0.447],
       [ 0.   ,  0.   ,  0.   ,  0.   ,  0.447]])
>>> a, b = np.linalg.eig(make_mat([2,3,3])) # repeating other values are not OK
>>> np.round(b, 3)
array([[ 1.   ,  0.447, -0.229, -0.229,  0.447],
       [ 0.   ,  0.894, -0.688, -0.688,  0.447],
       [ 0.   ,  0.   ,  0.688,  0.688,  0.447],
       [ 0.   ,  0.   ,  0.   ,  0.   ,  0.447],
       [ 0.   ,  0.   ,  0.   ,  0.   ,  0.447]])