我试图找到以下矩阵的特征值/向量:
A = np.array([[1, 0, 0],
[0, 1, 0],
[1, 1, 0]])
使用代码:
from numpy import linalg as LA
e_vals, e_vecs = LA.eig(A)
我得到这个答案:
print(e_vals)
[ 0. 1. 1.]
print(e_vecs)
[[ 0. 0.70710678 0. ]
[ 0. 0. 0.70710678]
[ 1. 0.70710678 0.70710678]]
但是,我相信以下应该是答案。
[1] Real Eigenvalue = 0.00000
[1] Real Eigenvector:
0.00000
0.00000
1.00000
[2] Real Eigenvalue = 1.00000
[2] Real Eigenvector:
1.00000
0.00000
1.00000
[3] Real Eigenvalue = 1.00000
[3] Real Eigenvector:
0.00000
1.00000
1.00000
也就是说,特征值-特征向量问题表明以下应该成立:
# A * e_vecs = e_vals * e_vecs
print(A.dot(e_vecs))
[[ 0. 0.70710678 0. ]
[ 0. 0. 0.70710678]
[ 0. 0.70710678 0.70710678]]
print(e_vals.dot(e_vecs))
[ 1. 0.70710678 1.41421356]