1

我是这个概念的初学者以及我尝试学习的前馈型神经网络(2x2x1的拓扑 ):

Bias and weight range of each neuron_____________Outputs for XOR test inputs
                [-1,1]                           1,1 ----> 0,9            
                                                 1,0 ----> 0,8
                                                 0,1 ---->-0.1
                                                 0,0 ----> 0.1

                [-10,10]                         1,1 ----> 0,24            
                                                 1,0 ----> 0,67
                                                 0,1 ---->-0.54
                                                 0,0 ----> 0.10

                [-4,4]                           1,1 ----> -0,02            
                                                 1,0 ----> 0,80
                                                 0,1 ----> 0.87
                                                 0,0 ----> -0.09

因此,[-4,4] 的范围似乎比其他范围更好。

问题:与温度限制和温度下降率相比,有没有办法找到重量和偏差的适当限制?

注意:我在这里尝试两种方法。首先是对每次试验一次随机化所有权重和偏差。其次是在每次试验中仅随机化单个权重和单个偏差。(降低温度之前的 50 次迭代)。单一的重量变化会产生更差的结果。

 (n+1) is next value, (n) is the value before

 TempMax=2.0
 TempMin=0.1 ----->approaching to zero, error of XOR output approaches to zero too
 Temp(n+1)=Temp(n)/1.001

 Weight update:
 w(n+1)=w(n)+(float)(Math.random()*t*2.0f-t*1.0f)); // t is temperature
 (same for bias update)

 Iterations per temperature=50

 Using java's Math.random() method(Spectral property is appropriate for annealing?)

 Transition probability:
 (1.0f/(1.0f+Math.exp(((candidate state error)-(old error))/temp)))

 Neuron activation function: Math.tanh()

多次尝试,结果几乎相同。重新退火是逃避更深的局部最小值的唯一解决方案吗?

我需要根据总神经元数和层数以及起始/启动温度的合适的权重/偏差范围/限制。3x6x5x6x1 可以计算 3 位输入并给出输出,可以近似步进函数,但我需要始终使用范围。

对于这个训练数据集,输出误差太大(193 个数据点,2 个输入,1 个输出):

193 2 1 0.499995 0.653846 1 0.544418 0.481604 1 0.620200 0.320118 1 0.595191 0.404816 0 0.404809 0.595184 1 0.171310 0.636142 0 0.014323 0.403392 0 0.617884 0.476556 0 0.391548 0.478424 1 0.455912 0.721618 0 0.615385 0.500005 0 0.268835 0.268827 0 0.812761 0.187243 0 0.076923 0.499997 1 0.769231 0.500006 0 0.650862 0.864223 0 0.799812 0.299678 1 0.328106 0.614848 0 0.591985 0.722088 0 0.692308 0.500005 1 0.899757 0.334418 0 0.484058 0.419839 1 0.200188 0.700322 0 0.863769 0.256940 0 0.384615 0.499995 1 0.457562 0.508439 0 0.515942 0.580161 0 0.844219 0.431535 1 0.456027 0.529379 0 0.235571 0.104252 0 0.260149 0.400644 1 0.500003 0.423077 1 0.544088 0.278382 1 0.597716 0.540480 0 0.562549 0.651021 1 0.574101 0.127491 1 0.545953 0.731052 0 0.649585 0.350424 1 0.607934 0.427886 0 0.499995 0.807692 1 0.437451 0.348979 0 0.382116 0.523444 1 1 0.500000 1 0.731165 0.731173 1 0.500002 0.038462 0 0.683896 0.536585 1 0.910232 0.581604 0 0.499998 0.961538 1 0.903742 0.769772 1 0.543973 0.470621 1 0.593481 0.639914 1 0.240659 0.448408 1 0.425899 0.872509 0 0 0.500000 0 0.500006 0.269231 1 0.155781 0.568465 0 0.096258 0.230228 0 0.583945 0.556095 0 0.550746 0.575954 0 0.680302 0.935290 1 0.693329 0.461550 1 0.500005 0.192308 0 0.230769 0.499994 1 0.721691 0.831791 0 0.621423 0.793156 1 0.735853 0.342415 0 0.402284 0.459520 1 0.589105 0.052045 0 0.189081 0.371208 0 0.533114 0.579952 0 0.251594 0.871762 1 0.764429 0.895748 1 0.499994 0.730769 0 0.415362 0.704317 0 0.422537 0.615923 1 0.337064 0.743842 1 0.560960 0.806496 1 0.810919 0.628792 1 0.319698 0.064710 0 0.757622 0.393295 0 0.577463 0.384077 0 0.349138 0.135777 1 0.165214 0.433402 0 0.241631 0.758362 0 0.118012 0.341772 1 0.514072 0.429271 1 0.676772 0.676781 0 0.294328 0.807801 0 0.153846 0.499995 0 0.500005 0.346154 0 0.307692 0.499995 0 0.615487 0.452168 0 0.466886 0.420048 1 0.440905 0.797064 1 0.485928 0.570729 0 0.470919 0.646174 1 0.224179 0.315696 0 0.439040 0.193504 0 0.408015 0.277912 1 0.316104 0.463415 0 0.278309 0.168209 1 0.214440 0.214435 1 0.089768 0.418396 1 0.678953 0.767832 1 0.080336 0.583473 1 0.363783 0.296127 1 0.474240 0.562183 0 0.313445 0.577267 0 0.416055 0.443905 1 0.529081 0.353826 0 0.953056 0.687662 1 0.534725 0.448035 1 0.469053 0.344394 0 0.759341 0.551592 0 0.705672 0.192199 1 0.385925 0.775385 1 0.590978 0.957385 1 0。406519 0.360086 0 0.409022 0.042615 0 0.264147 0.657585 1 0.758369 0.241638 1 0.622380 0.622388 1 0.321047 0.232168 0 0.739851 0.599356 0 0.555199 0.366750 0 0.608452 0.521576 0 0.352098 0.401168 0 0.530947 0.655606 1 0.160045 0.160044 0 0.455582 0.518396 0 0.881988 0.658228 0 0.643511 0.153547 1 0.499997 0.576923 0 0.575968 0.881942 0 0.923077 0.500003 0 0.449254 0.424046 1 0.839782 0.727039 0 0.647902 0.598832 1 0.444801 0.633250 1 0.392066 0.572114 1 0.242378 0.606705 1 0.136231 0.743060 1 0.711862 0.641568 0 0.834786 0.566598 1 0.846154 0.500005 1 0.538462 0.500002 1 0.379800 0.679882 0 0.584638 0.295683 1 0.459204 0.540793 0 0.331216 0.430082 0 0.672945 0.082478 0 0.671894 0.385152 1 0.046944 0.312338 0 0.499995 0.884615 0 0.542438 0.491561 1 0.540796 0.459207 1 0。828690 0.363858 1 0.785560 0.785565 0 0.686555 0.422733 1 0.231226 0.553456 1 0.465275 0.551965 0 0.378577 0.206844 0 0.567988 0.567994 0 0.668784 0.569918 1 0.384513 0.547832 1 0.288138 0.358432 1 0.432012 0.432006 1 0.424032 0.118058 1 0.296023 0.703969 1 0.525760 0.437817 1 0.748406 0.128238 0 0.775821 0.684304 1 0.919664 0.416527 0 0.327055 0.917522 1 0.985677 0.596608 1 0.356489 0.846453 0 0.500005 0.115385 1 0.377620 0.377612 0 0.559095 0.202936 0 0.410895 0.947955 1 0.187239 0.812757 1 0.768774 0.446544 0 0.614075 0.224615 0 0.350415 0.649576 0 0.160218 0.272961 1 0.454047 0.268948 1 0.306671 0.538450 0 0.323228 0.323219 1 0.839955 0.839956 1 0.636217 0.703873 0 0.703977 0.296031 0 0.662936 0.256158 0 0.100243 0.665582 1686555 0.422733 1 0.231226 0.553456 1 0.465275 0.551965 0 0.378577 0.206844 0 0.567988 0.567994 0 0.668784 0.569918 1 0.384513 0.547832 1 0.288138 0.358432 1 0.432012 0.432006 1 0.424032 0.118058 1 0.296023 0.703969 1 0.525760 0.437817 1 0.748406 0.128238 0 0.775821 0.684304 1 0.919664 0.416527 0 0.327055 0.917522 1 0.985677 0.596608 1 0.356489 0.846453 0 0.500005 0.115385 1 0.377620 0.377612 0 0.559095 0.202936 0 0.410895 0.947955 1 0.187239 0.812757 1 0.768774 0.446544 0 0.614075 0.224615 0 0.350415 0.649576 0 0.160218 0.272961 1 0.454047 0.268948 1 0.306671 0.538450 0 0.323228 0.323219 1 0.839955 0.839956 1 0.636217 0.703873 0 0.703977 0.296031 0 0.662936 0.256158 0 0.100243 0.665582 1686555 0.422733 1 0.231226 0.553456 1 0.465275 0.551965 0 0.378577 0.206844 0 0.567988 0.567994 0 0.668784 0.569918 1 0.384513 0.547832 1 0.288138 0.358432 1 0.432012 0.432006 1 0.424032 0.118058 1 0.296023 0.703969 1 0.525760 0.437817 1 0.748406 0.128238 0 0.775821 0.684304 1 0.919664 0.416527 0 0.327055 0.917522 1 0.985677 0.596608 1 0.356489 0.846453 0 0.500005 0.115385 1 0.377620 0.377612 0 0.559095 0.202936 0 0.410895 0.947955 1 0.187239 0.812757 1 0.768774 0.446544 0 0.614075 0.224615 0 0.350415 0.649576 0 0.160218 0.272961 1 0.454047 0.268948 1 0.306671 0.538450 0 0.323228 0.323219 1 0.839955 0.839956 1 0.636217 0.703873 0 0.703977 0.296031 0 0.662936 0.256158 0 0.100243 0.665582 1567994 0 0.668784 0.569918 1 0.384513 0.547832 1 0.288138 0.358432 1 0.432012 0.432006 1 0.424032 0.118058 1 0.296023 0.703969 1 0.525760 0.437817 1 0.748406 0.128238 0 0.775821 0.684304 1 0.919664 0.416527 0 0.327055 0.917522 1 0.985677 0.596608 1 0.356489 0.846453 0 0.500005 0.115385 1 0.377620 0.377612 0 0.559095 0.202936 0 0.410895 0.947955 1 0.187239 0.812757 1 0.768774 0.446544 0 0.614075 0.224615 0 0.350415 0.649576 0 0.160218 0.272961 1 0.454047 0.268948 1 0.306671 0.538450 0 0.323228 0.323219 1 0.839955 0.839956 1 0.636217 0.703873 0 0.703977 0.296031 0 0.662936 0.256158 0 0.100243 0.665582 1567994 0 0.668784 0.569918 1 0.384513 0.547832 1 0.288138 0.358432 1 0.432012 0.432006 1 0.424032 0.118058 1 0.296023 0.703969 1 0.525760 0.437817 1 0.748406 0.128238 0 0.775821 0.684304 1 0.919664 0.416527 0 0.327055 0.917522 1 0.985677 0.596608 1 0.356489 0.846453 0 0.500005 0.115385 1 0.377620 0.377612 0 0.559095 0.202936 0 0.410895 0.947955 1 0.187239 0.812757 1 0.768774 0.446544 0 0.614075 0.224615 0 0.350415 0.649576 0 0.160218 0.272961 1 0.454047 0.268948 1 0.306671 0.538450 0 0.323228 0.323219 1 0.839955 0.839956 1 0.636217 0.703873 0 0.703977 0.296031 0 0.662936 0.256158 0 0.100243 0.665582 1775821 0.684304 1 0.919664 0.416527 0 0.327055 0.917522 1 0.985677 0.596608 1 0.356489 0.846453 0 0.500005 0.115385 1 0.377620 0.377612 0 0.559095 0.202936 0 0.410895 0.947955 1 0.187239 0.812757 1 0.768774 0.446544 0 0.614075 0.224615 0 0.350415 0.649576 0 0.160218 0.272961 1 0.454047 0.268948 1 0.306671 0.538450 0 0.323228 0.323219 1 0.839955 0.839956 1 0.636217 0.703873 0 0.703977 0.296031 0 0.662936 0.256158 0 0.100243 0.665582 1775821 0.684304 1 0.919664 0.416527 0 0.327055 0.917522 1 0.985677 0.596608 1 0.356489 0.846453 0 0.500005 0.115385 1 0.377620 0.377612 0 0.559095 0.202936 0 0.410895 0.947955 1 0.187239 0.812757 1 0.768774 0.446544 0 0.614075 0.224615 0 0.350415 0.649576 0 0.160218 0.272961 1 0.454047 0.268948 1 0.306671 0.538450 0 0.323228 0.323219 1 0.839955 0.839956 1 0.636217 0.703873 0 0.703977 0.296031 0 0.662936 0.256158 0 0.100243 0.665582 1839956 1 0.636217 0.703873 0 0.703977 0.296031 0 0.662936 0.256158 0 0.100243 0.665582 1839956 1 0.636217 0.703873 0 0.703977 0.296031 0 0.662936 0.256158 0 0.100243 0.665582 1

4

1 回答 1

1

我非常怀疑您的问题是否存在任何严格的规则。首先,权重的限制/界限严格取决于您的输入数据表示、激活函数、神经元数量和输出函数。您可以在这里依靠的是最佳情况下的经验法则。

首先,让我们考虑经典算法中的初始权重值。权重比例的一些基本思想是在小层的范围内使用它们,[-1,1]对于大层,将其除以大层中单元数的平方根。Bishop (1995)描述了更复杂的方法。有了这样的经验法则,我们可以推断出一个合理的范围(只是比最初猜测大的一排大小)将是[-10,10]/sqrt(neurons_count_in_the_lower_layer).

不幸的是,据我所知,温度选择要复杂得多,因为它是一个依赖于数据的因素,而不仅仅是基于拓扑的因素。在一些论文中,有人对某些特定时间序列预测的一些值提出了建议,但没有一般性。在“一般”的模拟退火中(不仅适用于神经网络训练),已经提出了许多启发式选择,即。

如果我们知道一个邻居和另一个邻居之间的最大距离(成本函数差异),那么我们可以使用此信息来计算起始温度。(13. Rayward-Smith, VJ, Osman, IH, Reeves, CR, Smith, GD 1996. Modern Heuristic Search Methods. John Wiley & Sons.)中建议的另一种方法是从非常高的温度开始并对其进行冷却直到大约 60% 的最差解决方案被接受。这形成了真正的起始温度,现在可以更慢地冷却。(5. Dowsland, KA 1995. Simulated Annealing. In Modern Heuristic Techniques for Combinatorial Problems (ed. Reeves, CR), McGraw-Hill, 1995) 中提出了一个类似的想法,即快速加热系统直到达到一定比例的温度。更糟糕的解决方案被接受,然后开始缓慢冷却。这可以看出类似于物理退火的工作原理,因为材料被加热直到它变成液体,然后开始冷却(即,一旦材料变成液体,继续加热它是没有意义的)。[来自诺丁汉大学的笔记]

但是对于您的应用程序的最佳选择必须基于大量测试,就像机器学习中的大多数事情一样。如果你正在处理这个问题,你真的关心训练有素的神经网络,那么对极限机器学习极限学习机器 (ELM)感兴趣似乎是合理的,其中神经网络训练是在全局优化过程中进行的,这保证了最好的解决方案(在使用的正则化成本函数下)。模拟退火,作为一个交互的、贪婪的过程(以及反向传播)不能保证任何事情,只有启发式和经验法则。

于 2013-09-06T17:47:17.793 回答