4

I've been asked to make some MATLAB code run faster, and have run into something that seems strange to me.

In one of the functions there's a loop where we multiply a 3x1 vector (let's call it x) - a 3x3 matrix (let's call it A) - and the transpose of x, yielding a scalar. The code has the whole set of element-by-element multiplications and additions, and is pretty cumbersome:

val = x(1)*A(1,1)*x(1) + x(1)*A(1,2)*x(2) + x(1)*A(1,3)*x(3) + ...
      x(2)*A(2,1)*x(1) + x(2)*A(2,2)*x(2) + x(2)*A(2,3)*x(3) + ... 
      x(3)*A(3,1)*x(1) + x(3)*A(3,2)*x(2) + x(3)*A(3,3)*x(3);

I figured I'd just replace it all by:

val = x*A*x';

To my surprise, it ran significantly slower (as in 4-5 times slower). Is it just that the vector and matrix are so small that MATLAB's optimizations don't apply?

4

2 回答 2

8

编辑:我改进了测试以提供更准确的时间。我还优化了展开的版本,它现在比我最初拥有的要好得多,随着大小的增加,矩阵乘法仍然更快。

EDIT2:为了确保 JIT 编译器正在处理展开的函数,我修改了代码以将生成的函数编写为 M 文件。此外,现在可以将比较视为公平的,因为这两种方法都是通过将 TIMEIT 传递给函数句柄来评估的:timeit(@myfunc)


我不相信您的方法比合理大小的矩阵乘法更快。所以让我们比较这两种方法。

我正在使用符号数学工具箱来帮助我获得方程的“展开”形式x'*A*x(尝试手动将 20x20 矩阵和 20x1 向量相乘!):

function f = buildUnrolledFunction(N)
    % avoid regenerating files, CCODE below can be really slow!
    fname = sprintf('f%d',N);
    if exist([fname '.m'], 'file')
        f = str2func(fname);
        return
    end

    % construct symbolic vector/matrix of the specified size
    x = sym('x', [N 1]);
    A = sym('A', [N N]);

    % work out the expanded form of the matrix-multiplication
    % and convert it to a string
    s = ccode(expand(x.'*A*x));    % instead of char(.) to avoid x^2

    % a bit of RegExp to fix the notation of the variable names
    % also convert indexing into linear indices: A(3,3) into A(9)
    s = regexprep(regexprep(s, '^.*=\s+', ''), ';$', '');
    s = regexprep(regexprep(s, 'x(\d+)', 'x($1)'), 'A(\d+)_(\d+)', ...
        'A(${ int2str(sub2ind([N N],str2num($1),str2num($2))) })');

    % build an M-function from the string, and write it to file
    fid = fopen([fname '.m'], 'wt');
    fprintf(fid, 'function v = %s(A,x)\nv = %s;\nend\n', fname, s);
    fclose(fid);

    % rehash path and return a function handle
    rehash
    clear(fname)
    f = str2func(fname);
end

我试图通过避免取幂来优化生成的函数(我们更喜欢x*xx^2。我还将下标转换为线性索引(A(9)而不是A(3,3))。因此,n=3我们得到与您相同的等式:

>> s
s =
A(1)*(x(1)*x(1)) + A(5)*(x(2)*x(2)) + A(9)*(x(3)*x(3)) + 
A(4)*x(1)*x(2) + A(7)*x(1)*x(3) + A(2)*x(1)*x(2) + 
A(8)*x(2)*x(3) + A(3)*x(1)*x(3) + A(6)*x(2)*x(3)

鉴于上述构造 M 函数的方法,我们现在评估它的各种大小并将其与矩阵乘法形式进行比较(我将它放在一个单独的函数中以考虑函数调用开销)。我正在使用TIMEIT函数而不是tic/toc获得更准确的时间。同样为了公平比较,每个方法都实现为一个 M 文件函数,该函数将所有需要的变量作为输入参数传递。

function results = testMatrixMultVsUnrolled()
    % vector/matrix size
    N_vec = 2:50;
    results = zeros(numel(N_vec),3);
    for ii = 1:numel(N_vec);
        % some random data
        N = N_vec(ii);
        x = rand(N,1); A = rand(N,N);

        % matrix multiplication
        f = @matMult;
        results(ii,1) = timeit(@() feval(f, A,x));

        % unrolled equation
        f = buildUnrolledFunction(N);
        results(ii,2) = timeit(@() feval(f, A,x));

        % check result
        results(ii,3) = norm(matMult(A,x) - f(A,x));
    end

    % display results
    fprintf('N = %2d: mtimes = %.6f ms, unroll = %.6f ms [error = %g]\n', ...
        [N_vec(:) results(:,1:2)*1e3 results(:,3)]')
    plot(N_vec, results(:,1:2)*1e3, 'LineWidth',2)
    xlabel('size (N)'), ylabel('timing [msec]'), grid on
    legend({'mtimes','unrolled'})
    title('Matrix multiplication: $$x^\mathsf{T}Ax$$', ...
        'Interpreter','latex', 'FontSize',14)
end

function v = matMult(A,x)
    v = x.' * A * x;
end

结果:

定时 计时特写

N =  2: mtimes = 0.008816 ms, unroll = 0.006793 ms [error = 0]
N =  3: mtimes = 0.008957 ms, unroll = 0.007554 ms [error = 0]
N =  4: mtimes = 0.009025 ms, unroll = 0.008261 ms [error = 4.44089e-16]
N =  5: mtimes = 0.009075 ms, unroll = 0.008658 ms [error = 0]
N =  6: mtimes = 0.009003 ms, unroll = 0.008689 ms [error = 8.88178e-16]
N =  7: mtimes = 0.009234 ms, unroll = 0.009087 ms [error = 1.77636e-15]
N =  8: mtimes = 0.008575 ms, unroll = 0.009744 ms [error = 8.88178e-16]
N =  9: mtimes = 0.008601 ms, unroll = 0.011948 ms [error = 0]
N = 10: mtimes = 0.009077 ms, unroll = 0.014052 ms [error = 0]
N = 11: mtimes = 0.009339 ms, unroll = 0.015358 ms [error = 3.55271e-15]
N = 12: mtimes = 0.009271 ms, unroll = 0.018494 ms [error = 3.55271e-15]
N = 13: mtimes = 0.009166 ms, unroll = 0.020238 ms [error = 0]
N = 14: mtimes = 0.009204 ms, unroll = 0.023326 ms [error = 7.10543e-15]
N = 15: mtimes = 0.009396 ms, unroll = 0.024767 ms [error = 3.55271e-15]
N = 16: mtimes = 0.009193 ms, unroll = 0.027294 ms [error = 2.4869e-14]
N = 17: mtimes = 0.009182 ms, unroll = 0.029698 ms [error = 2.13163e-14]
N = 18: mtimes = 0.009330 ms, unroll = 0.033295 ms [error = 7.10543e-15]
N = 19: mtimes = 0.009411 ms, unroll = 0.152308 ms [error = 7.10543e-15]
N = 20: mtimes = 0.009366 ms, unroll = 0.167336 ms [error = 7.10543e-15]
N = 21: mtimes = 0.009335 ms, unroll = 0.183371 ms [error = 0]
N = 22: mtimes = 0.009349 ms, unroll = 0.200859 ms [error = 7.10543e-14]
N = 23: mtimes = 0.009411 ms, unroll = 0.218477 ms [error = 8.52651e-14]
N = 24: mtimes = 0.009307 ms, unroll = 0.235668 ms [error = 4.26326e-14]
N = 25: mtimes = 0.009425 ms, unroll = 0.256491 ms [error = 1.13687e-13]
N = 26: mtimes = 0.009392 ms, unroll = 0.274879 ms [error = 7.10543e-15]
N = 27: mtimes = 0.009515 ms, unroll = 0.296795 ms [error = 2.84217e-14]
N = 28: mtimes = 0.009567 ms, unroll = 0.319032 ms [error = 5.68434e-14]
N = 29: mtimes = 0.009548 ms, unroll = 0.339517 ms [error = 3.12639e-13]
N = 30: mtimes = 0.009617 ms, unroll = 0.361897 ms [error = 1.7053e-13]
N = 31: mtimes = 0.009672 ms, unroll = 0.387270 ms [error = 0]
N = 32: mtimes = 0.009629 ms, unroll = 0.410932 ms [error = 1.42109e-13]
N = 33: mtimes = 0.009605 ms, unroll = 0.434452 ms [error = 1.42109e-13]
N = 34: mtimes = 0.009534 ms, unroll = 0.462961 ms [error = 0]
N = 35: mtimes = 0.009696 ms, unroll = 0.489474 ms [error = 5.68434e-14]
N = 36: mtimes = 0.009691 ms, unroll = 0.512198 ms [error = 8.52651e-14]
N = 37: mtimes = 0.009671 ms, unroll = 0.544485 ms [error = 5.68434e-14]
N = 38: mtimes = 0.009710 ms, unroll = 0.573564 ms [error = 8.52651e-14]
N = 39: mtimes = 0.009946 ms, unroll = 0.604567 ms [error = 3.41061e-13]
N = 40: mtimes = 0.009735 ms, unroll = 0.636640 ms [error = 3.12639e-13]
N = 41: mtimes = 0.009858 ms, unroll = 0.665719 ms [error = 5.40012e-13]
N = 42: mtimes = 0.009876 ms, unroll = 0.697364 ms [error = 0]
N = 43: mtimes = 0.009956 ms, unroll = 0.730506 ms [error = 2.55795e-13]
N = 44: mtimes = 0.009897 ms, unroll = 0.765358 ms [error = 4.26326e-13]
N = 45: mtimes = 0.009991 ms, unroll = 0.800424 ms [error = 0]
N = 46: mtimes = 0.009956 ms, unroll = 0.829717 ms [error = 2.27374e-13]
N = 47: mtimes = 0.010210 ms, unroll = 0.865424 ms [error = 2.84217e-13]
N = 48: mtimes = 0.010022 ms, unroll = 0.907974 ms [error = 3.97904e-13]
N = 49: mtimes = 0.010098 ms, unroll = 0.944536 ms [error = 5.68434e-13]
N = 50: mtimes = 0.010153 ms, unroll = 0.984486 ms [error = 4.54747e-13]

在小尺寸下,这两种方法的表现有些相似。虽然为N<7扩展版beats mtimes,但差别不大。一旦我们超越了微小的尺寸,矩阵乘法就会快几个数量级。

这并不奇怪。只有公式很长,涉及添加 400 个术语N=20。由于解释了 MATLAB 语言,我怀疑这是否非常有效..


现在我同意调用外部函数与直接嵌入代码相比有开销,但这种方法有多实用。即使是小尺寸 as N=20,生成的行也超过 7000 个字符!我还注意到 MATLAB 编辑器由于行长而变得迟缓:)

而且,优势在左右之后很快就消失了N>10。我比较了嵌入式代码/显式编写与矩阵乘法,类似于@DennisJaheruddin 的建议。结果:_

N=3:
  Elapsed time is 0.062295 seconds.    % unroll
  Elapsed time is 1.117962 seconds.    % mtimes

N=12:
  Elapsed time is 1.024837 seconds.    % unroll
  Elapsed time is 1.126147 seconds.    % mtimes

N=19:
  Elapsed time is 140.915138 seconds.  % unroll
  Elapsed time is 1.305382 seconds.    % mtimes

...对于展开的版本,它只会变得更糟。就像我之前说的,MATLAB 是经过解释的,因此解析代码的成本开始体现在如此巨大的文件中。

在我看来,在进行了一百万次迭代之后,我们最多只获得了 1 秒,我认为这并不能证明所有的麻烦和黑客行为都是合理的,而不是使用更具可读性和简洁性的v=x'*A*x. 因此,也许代码中还有其他地方可以改进,而不是专注于已经优化的操作,例如矩阵乘法。

MATLAB中的 矩阵乘法非常 (这是 MATLAB 最擅长的!)。一旦你获得足够大的数据(多线程开始),它真的会发光:

>> N=5000; x=rand(N,1); A=rand(N,N);
>> tic, for i=1e4, v=x.'*A*x; end, toc
Elapsed time is 0.021959 seconds.
于 2013-08-30T05:36:10.140 回答
2

@Amro 给出了广泛的答案,我同意一般来说,您不应该费心写出显式计算,而只需在代码中的任何地方使用矩阵乘法。

但是,如果您的矩阵足够小,并且您确实需要计算数十亿次,那么写出的表格可以明显更快(更少的开销)。然而,诀窍是不要将您的代码放在单独的函数中,因为调用开销将远远大于计算时间。

这是一个小例子:

x = 1:3;
A = rand(3);
v=0;

unroll = @(x) A(1)*(x(1)*x(1)) + A(5)*(x(2)*x(2)) + A(9)*(x(3)*x(3)) + A(4)*x(1)*x(2) + A(7)*x(1)*x(3) + A(2)*x(1)*x(2) + A(8)*x(2)*x(3) + A(3)*x(1)*x(3) + A(6)*x(2)*x(3); 
regular = @(x) x*A*x'; 

%Written out, no function call
tic
for t = 1:1e6
  v = A(1)*(x(1)*x(1)) + A(5)*(x(2)*x(2)) + A(9)*(x(3)*x(3)) + A(4)*x(1)*x(2) + A(7)*x(1)*x(3) + A(2)*x(1)*x(2) + A(8)*x(2)*x(3) + A(3)*x(1)*x(3) + A(6)*x(2)*x(3);;
end
t1=toc;

%Matrix form, no function call
tic
for t = 1:1e6
  v = x*A*x';
end
t2=toc;

%Written out, function call
tic
for t = 1:1e6
  v = unroll(x);
end
t3=toc;

%Matrix form, function call
tic
for t = 1:1e6
  v = regular(x); 
end
t4=toc;

[t1;t2;t3;t4]

这将给出以下结果:

0.0767
1.6988

6.1975
7.9353

因此,如果您通过(匿名)函数调用它,则使用书面形式不会很有趣,但是如果您真的想获得最佳速度,只需直接使用书面形式就可以让您大大加快速度矩阵。

于 2013-08-30T08:11:51.127 回答