我之前发布了一个关于 CUDA 中的矩阵向量乘法和关于编写我自己的内核的问题。在这样做之后,我决定使用 CUBLAS 来实现我的问题,正如一些用户建议的那样(感谢@Robert Crovella),希望获得更高的性能(我的项目是性能驱动的)。
澄清一下:我想将 NxN 矩阵与 1xN 向量相乘。
几天来,我一直在查看粘贴在下面的代码,但我无法弄清楚为什么乘法会给我一个不正确的结果。我担心我使用 <vector> 数组会引起问题(这是使用这些数据类型的更大系统的一部分)。我并不是要将这个线程用作调试工具,但我认为这也将有助于其他试图实现这一目标的用户,因为我没有在互联网上找到针对我的特定问题(以及 cublas)的特别全面的资源v2 API)。提前致谢!
#include <cuda.h>
#include <vector>
#include <iostream>
#include <fstream>
#include <stdio.h>
#include <stdlib.h>
#include <cmath>
#include <cublas_v2.h>
#include <time.h>
//#include "timenow.cu"
// error check macros
#define cudaCheckErrors(msg) \
do { \
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
msg, cudaGetErrorString(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
// for CUBLAS V2 API
#define cublasCheckErrors(fn) \
do { \
cublasStatus_t __err = fn; \
if (__err != CUBLAS_STATUS_SUCCESS) { \
fprintf(stderr, "Fatal cublas error: %d (at %s:%d)\n", \
(int)(__err), \
__FILE__, __LINE__); \
fprintf(stderr, "*** FAILED - ABORTING\n"); \
exit(1); \
} \
} while (0)
// random data filler
void fillvector(float *data, int N){
for(int i=0; i<N; i++){
data[i] = float(rand() % 10);
}
}
//printer
void printer(bool printOut, float *data, int N){
if(printOut == true){
for(int i=0; i<N; i++){
printf("%2.1f ", data[i]);
}
printf("\n");
}
}
/////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////
int main(){
bool printOut = true;
int N;
std::cout << "Enter N: " ;
std::cin >> N;
std::vector<float> x0;
x0.resize(N);
std::vector<float> p;
p.resize(N*N);
// matrix A
std::vector<float> A[N];
for(int i=0;i<N;i++){
A[i].resize(N);
fillvector(A[i].data(), N);
printer(printOut, A[i].data(), N);
}
printf("\n");
fillvector(x0.data(), N);
printer(printOut, x0.data(), N);
printf("\nStarting CUDA computation...");
///double startTime = timenow();
// device pointers
float *d_A, *d_p, *d_b, *d_x0, *d_v, *d_temp;
cudaMalloc((void**)&d_A, N*N*sizeof(float));
cudaMalloc((void**)&d_temp, N*sizeof(float));
cudaMalloc((void**)&d_x0, N*sizeof(float));
cudaCheckErrors("cuda malloc fail");
// might need to flatten A...
cublasSetVector(N, sizeof(float), &x0, 1, d_x0, 1);
//daMemcpy(d_x0, &x0, N*sizeof(float), cudaMemcpyHostToDevice);
cublasSetMatrix(N, N, sizeof(float), &A, N, d_A, N);
cudaCheckErrors("cuda memcpy of A or x0 fail");
float *temp;
temp = (float *)malloc(N*sizeof(temp));
cublasHandle_t handle;
cublasCheckErrors(cublasCreate(&handle));
float alpha = 1.0f;
float beta = 0.0f;
cublasCheckErrors(cublasSgemv(handle, CUBLAS_OP_N, N, N, &alpha, d_A, N, d_x0, 1, &beta, d_temp, 1));
cublasGetVector(N, sizeof(float), &temp, 1, d_temp, 1);
//cudaMemcpy(temp, d_temp, N*sizeof(float), cudaMemcpyDeviceToHost);
cudaCheckErrors("returning to host failed");
printf("\n");
printer(printOut, temp, N);
/*alpha = -1.0;
cublasSaxpy(handle, N, &alpha, d_temp, 1, d_v, 1);
cublasGetVector(N, sizeof(float) * N, d_v, 1, &v, 1);
printf("\n");
for(int i=0; i<N; i++){
printf("%2.1f ",v[i]);
}*/
printf("\nFinished CUDA computations...");
//double endTime = timenow();
//double timeDiff = endTime - startTime;
//printf("\nRuntime: %2.3f seconds \n", timeDiff);
cudaFree(d_temp);
cudaFree(d_A);
cudaFree(d_p);
cudaFree(d_x0);
return 0;
}