104

Python in a Nutshell (2nd Edition) 一书中,有一个示例使用
旧样式类来演示如何以经典解析顺序解析方法以及
它与新顺序有何不同。

我通过用新样式重写示例来尝试相同的示例,但结果与使用旧样式类获得的结果没有什么不同。我用来运行示例的 python 版本是2.5.2。下面是示例:

class Base1(object):  
    def amethod(self): print "Base1"  

class Base2(Base1):  
    pass

class Base3(object):  
    def amethod(self): print "Base3"

class Derived(Base2,Base3):  
    pass

instance = Derived()  
instance.amethod()  
print Derived.__mro__  

调用instance.amethod()打印Base1,但根据我对具有新样式类的 MRO 的理解,输出应该是Base3。调用Derived.__mro__打印:

(<class '__main__.Derived'>, <class '__main__.Base2'>, <class '__main__.Base1'>, <class '__main__.Base3'>, <type 'object'>)

我不确定我对新样式类的 MRO 的理解是否不正确,或者我犯了一个我无法检测到的愚蠢错误。请帮助我更好地了解 MRO。

4

4 回答 4

195

当同一个祖先类在“幼稚”、深度优先的方法中多次出现时,遗留类与新式类的解析顺序之间的关键区别就出现了——例如,考虑“钻石继承”的情况:

>>> class A: x = 'a'
... 
>>> class B(A): pass
... 
>>> class C(A): x = 'c'
... 
>>> class D(B, C): pass
... 
>>> D.x
'a'

这里,legacy-style,解析顺序是 D - B - A - C - A :所以在查找 Dx 时,A 是解析顺序的第一个基数,从而隐藏了 C 中的定义。同时:

>>> class A(object): x = 'a'
... 
>>> class B(A): pass
... 
>>> class C(A): x = 'c'
... 
>>> class D(B, C): pass
... 
>>> D.x
'c'
>>> 

这里,new-style,顺序是:

>>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, 
    <class '__main__.A'>, <type 'object'>)

强制在其A所有子类之后仅按解析顺序进行一次,因此覆盖(即 C 对 member 的覆盖x)实际上是明智的。

这是应避免使用旧样式类的原因之一:具有“类菱形”模式的多重继承对它们不起作用,而对新样式却适用。

于 2009-12-04T18:03:00.753 回答
28

Python 的方法解析顺序实际上比仅仅理解菱形图案更复杂。要真正理解它,请看一下C3 线性化。我发现在扩展方法来跟踪订单时使用打印语句真的很有帮助。例如,您认为这种模式的输出会是什么?(注意:“X”假设是两个交叉边,而不是节点,^ 表示调用 super() 的方法)

class G():
    def m(self):
        print("G")

class F(G):
    def m(self):
        print("F")
        super().m()

class E(G):
    def m(self):
        print("E")
        super().m()

class D(G):
    def m(self):
        print("D")
        super().m()

class C(E):
    def m(self):
        print("C")
        super().m()

class B(D, E, F):
    def m(self):
        print("B")
        super().m()

class A(B, C):
    def m(self):
        print("A")
        super().m()


#      A^
#     / \
#    B^  C^
#   /| X
# D^ E^ F^
#  \ | /
#    G

你得到ABDCEFG了吗?

x = A()
x.m()

经过大量尝试错误后,我想出了一个非正式的图论对 C3 线性化的解释如下:(如果这是错误的,请告诉我。)

考虑这个例子:

class I(G):
    def m(self):
        print("I")
        super().m()

class H():
    def m(self):
        print("H")

class G(H):
    def m(self):
        print("G")
        super().m()

class F(H):
    def m(self):
        print("F")
        super().m()

class E(H):
    def m(self):
        print("E")
        super().m()

class D(F):
    def m(self):
        print("D")
        super().m()

class C(E, F, G):
    def m(self):
        print("C")
        super().m()

class B():
    def m(self):
        print("B")
        super().m()

class A(B, C, D):
    def m(self):
        print("A")
        super().m()

# Algorithm:

# 1. Build an inheritance graph such that the children point at the parents (you'll have to imagine the arrows are there) and
#    keeping the correct left to right order. (I've marked methods that call super with ^)

#          A^
#       /  |  \
#     /    |    \
#   B^     C^    D^  I^
#        / | \  /   /
#       /  |  X    /   
#      /   |/  \  /     
#    E^    F^   G^
#     \    |    /
#       \  |  / 
#          H
# (In this example, A is a child of B, so imagine an edge going FROM A TO B)

# 2. Remove all classes that aren't eventually inherited by A

#          A^
#       /  |  \
#     /    |    \
#   B^     C^    D^
#        / | \  /  
#       /  |  X    
#      /   |/  \ 
#    E^    F^   G^
#     \    |    /
#       \  |  / 
#          H

# 3. For each level of the graph from bottom to top
#       For each node in the level from right to left
#           Remove all of the edges coming into the node except for the right-most one
#           Remove all of the edges going out of the node except for the left-most one

# Level {H}
#
#          A^
#       /  |  \
#     /    |    \
#   B^     C^    D^
#        / | \  /  
#       /  |  X    
#      /   |/  \ 
#    E^    F^   G^
#               |
#               |
#               H

# Level {G F E}
#
#         A^
#       / |  \
#     /   |    \
#   B^    C^   D^
#         | \ /  
#         |  X    
#         | | \
#         E^F^ G^
#              |
#              |
#              H

# Level {D C B}
#
#      A^
#     /| \
#    / |  \
#   B^ C^ D^
#      |  |  
#      |  |    
#      |  |  
#      E^ F^ G^
#            |
#            |
#            H

# Level {A}
#
#   A^
#   |
#   |
#   B^  C^  D^
#       |   |
#       |   |
#       |   |
#       E^  F^  G^
#               |
#               |
#               H

# The resolution order can now be determined by reading from top to bottom, left to right.  A B C E D F G H

x = A()
x.m()
于 2014-12-27T18:20:22.193 回答
5

你得到的结果是正确的。Base3尝试更改to的基类Base1并与经典类的相同层次结构进行比较:

class Base1(object):
    def amethod(self): print "Base1"

class Base2(Base1):
    pass

class Base3(Base1):
    def amethod(self): print "Base3"

class Derived(Base2,Base3):
    pass

instance = Derived()
instance.amethod()


class Base1:
    def amethod(self): print "Base1"

class Base2(Base1):
    pass

class Base3(Base1):
    def amethod(self): print "Base3"

class Derived(Base2,Base3):
    pass

instance = Derived()
instance.amethod()

现在它输出:

Base3
Base1

阅读此说明以获取更多信息。

于 2009-12-04T17:46:35.320 回答
1

您会看到这种行为,因为方法解析是深度优先的,而不是广度优先的。Dervied 的继承看起来像

         Base2 -> Base1
        /
Derived - Base3

所以instance.amethod()

  1. 检查Base2,没有找到方法。
  2. 看到 Base2 继承自 Base1,并检查 Base1。Base1 有一个amethod,所以它被调用。

这体现在Derived.__mro__. Derived.__mro__当您找到正在寻找的方法时,只需迭代并停止。

于 2009-12-04T17:53:17.103 回答