62

I'd like to create a stacked histogram. If I have a single 2-D array, made of three equal length data sets, this is simple. Code and image below:

import numpy as np
from matplotlib import pyplot as plt

# create 3 data sets with 1,000 samples
mu, sigma = 200, 25
x = mu + sigma*np.random.randn(1000,3)

#Stack the data
plt.figure()
n, bins, patches = plt.hist(x, 30, stacked=True, density = True)
plt.show()

enter image description here

However, if I try similar code with three data sets of a different length the results are that one histogram covers up another. Is there any way I can do the stacked histogram with mixed length data sets?

##Continued from above
###Now as three separate arrays
x1 = mu + sigma*np.random.randn(990,1)
x2 = mu + sigma*np.random.randn(980,1)
x3 = mu + sigma*np.random.randn(1000,1)

#Stack the data
plt.figure()
plt.hist(x1, bins, stacked=True, density = True)
plt.hist(x2, bins, stacked=True, density = True)
plt.hist(x3, bins, stacked=True, density = True)
plt.show()

enter image description here

4

2 回答 2

95

嗯,这很简单。我只需要将三个数组放在一个列表中。

##Continued from above
###Now as three separate arrays
x1 = mu + sigma*np.random.randn(990,1)
x2 = mu + sigma*np.random.randn(980,1)
x3 = mu + sigma*np.random.randn(1000,1)

#Stack the data
plt.figure()
plt.hist([x1,x2,x3], bins, stacked=True, density=True)
plt.show()
于 2013-08-26T17:35:44.587 回答
6
import pandas as pd
import numpy as np

# create the uneven arrays
mu, sigma = 200, 25
np.random.seed(365)
x1 = mu + sigma*np.random.randn(990, 1)
x2 = mu + sigma*np.random.randn(980, 1)
x3 = mu + sigma*np.random.randn(1000, 1)

# create the dataframe; enumerate is used to make column names
df = pd.concat([pd.DataFrame(a, columns=[f'x{i}']) for i, a in enumerate([x1, x2, x3], 1)], axis=1)

# plot the data
df.plot.hist(stacked=True, bins=30, density=True, figsize=(10, 6), grid=True)

在此处输入图像描述

于 2020-09-09T23:18:47.223 回答