我有这段代码用于计算与 tf-idf 的文本相似度。
from sklearn.feature_extraction.text import TfidfVectorizer
documents = [doc1,doc2]
tfidf = TfidfVectorizer().fit_transform(documents)
pairwise_similarity = tfidf * tfidf.T
print pairwise_similarity.A
问题是这段代码将纯字符串作为输入,我想通过删除停用词、词干提取和标记化来准备文档。所以输入将是一个列表。如果我documents = [doc1,doc2]
使用标记化文档调用 ,则错误是:
Traceback (most recent call last):
File "C:\Users\tasos\Desktop\my thesis\beta\similarity.py", line 18, in <module>
tfidf = TfidfVectorizer().fit_transform(documents)
File "C:\Python27\lib\site-packages\scikit_learn-0.14.1-py2.7-win32.egg\sklearn\feature_extraction\text.py", line 1219, in fit_transform
X = super(TfidfVectorizer, self).fit_transform(raw_documents)
File "C:\Python27\lib\site-packages\scikit_learn-0.14.1-py2.7-win32.egg\sklearn\feature_extraction\text.py", line 780, in fit_transform
vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary)
File "C:\Python27\lib\site-packages\scikit_learn-0.14.1-py2.7-win32.egg\sklearn\feature_extraction\text.py", line 715, in _count_vocab
for feature in analyze(doc):
File "C:\Python27\lib\site-packages\scikit_learn-0.14.1-py2.7-win32.egg\sklearn\feature_extraction\text.py", line 229, in <lambda>
tokenize(preprocess(self.decode(doc))), stop_words)
File "C:\Python27\lib\site-packages\scikit_learn-0.14.1-py2.7-win32.egg\sklearn\feature_extraction\text.py", line 195, in <lambda>
return lambda x: strip_accents(x.lower())
AttributeError: 'unicode' object has no attribute 'apply_freq_filter'
有什么方法可以更改代码并使其接受列表,还是让我再次将标记化的文档更改为字符串?