13

我想在 Python 中应用自适应滤波器,但在网上找不到任何关于如何实现这种算法的文档或示例。我熟悉使用scipy.signal工具箱设计“静态”滤波器,但我不知道如何设计自适应滤波器。

澄清一下:我有一个S包含噪音的记录信号。在这段录音中有一个我想访问的“真实”函数,称之为T. 我也有一个估计T。我想设计一个过滤器,使过滤器S和过滤器之间的误差T最小化。请注意,在这种情况下,静态滤波器没有用,因为我正在尝试过滤非平稳信号。

4

2 回答 2

18

这是一个使用 Numpy 的 Python 中的基本 LMS 自适应滤波器。
欢迎评论,欢迎测试用例。

在此处输入图像描述

""" lms.py: a simple python class for Least mean squares adaptive filter """

from __future__ import division
import numpy as np

__version__ = "2013-08-29 aug denis"

#...............................................................................
class LMS:
    """ lms = LMS( Wt, damp=.5 )  Least mean squares adaptive filter
    in:
        Wt: initial weights, e.g. np.zeros( 33 )
        damp: a damping factor for swings in Wt

    # for t in range(1000):

    yest = lms.est( X, y [verbose=] )
    in: X: a vector of the same length as Wt
        y: signal + noise, a scalar
        optional verbose > 0: prints a line like "LMS: yest y c"
    out: yest = Wt.dot( X )
        lms.Wt updated

    How it works:
    on each call of est( X, y ) / each timestep,
    increment Wt with a multiple of this X:
        Wt += c X
    What c would give error 0 for *this* X, y ?

        y = (Wt + c X) . X
        =>
        c = (y  -  Wt . X)
            --------------
               X . X

    Swings in Wt are damped a bit with a damping factor a.k.a. mu in 0 .. 1:
        Wt += damp * c * X

    Notes:
        X s are often cut from a long sequence of scalars, but can be anything:
        samples at different time scales, seconds minutes hours,
        or for images, cones in 2d or 3d x time.

"""

# See also:
#     http://en.wikipedia.org/wiki/Least_mean_squares_filter
#     Mahmood et al. Tuning-free step-size adaptation, 2012, 4p
# todo: y vec, X (Wtlen,ylen)

#...............................................................................
    def __init__( self, Wt, damp=.5 ):
        self.Wt = np.squeeze( getattr( Wt, "A", Wt ))  # matrix -> array
        self.damp = damp

    def est( self, X, y, verbose=0 ):
        X = np.squeeze( getattr( X, "A", X ))
        yest = self.Wt.dot(X)
        c = (y - yest) / X.dot(X)
            # clip to cmax ?
        self.Wt += self.damp * c * X
        if verbose:
            print "LMS: yest %-6.3g   y %-6.3g   err %-5.2g   c %.2g" % (
                yest, y, yest - y, c )
        return yest

#...............................................................................
if __name__ == "__main__":
    import sys

    filterlen = 10
    damp = .1
    nx = 500
    f1 = 40  # chirp
    noise = .05 * 2  # * swing
    plot = 0
    seed = 0

    exec( "\n".join( sys.argv[1:] ))  # run this.py n= ...  from sh or ipython
    np.set_printoptions( 2, threshold=100, edgeitems=10, linewidth=80, suppress=True )
    np.random.seed(seed)

    def chirp( n, f0=2, f1=40, t1=1 ):  # <-- your test function here
        # from $scipy/signal/waveforms.py
        t = np.arange( n + 0. ) / n * t1
        return np.sin( 2*np.pi * f0 * (f1/f0)**t )

    Xlong = chirp( nx, f1=f1 )
    # Xlong = np.cos( 2*np.pi * freq * np.arange(nx) )
    if noise:
        Xlong += np.random.normal( scale=noise, size=nx )  # laplace ...
    Xlong *= 10

    print 80 * "-"
    title = "LMS  chirp  filterlen %d  nx %d  noise %.2g  damp %.2g " % (
        filterlen, nx, noise, damp )
    print title
    ys = []
    yests = []

#...............................................................................
    lms = LMS( np.zeros(filterlen), damp=damp )
    for t in xrange( nx - filterlen ):
        X = Xlong[t:t+filterlen]
        y = Xlong[t+filterlen]  # predict
        yest = lms.est( X, y, verbose = (t % 10 == 0) )
        ys += [y]
        yests += [yest]

    y = np.array(ys)
    yest = np.array(yests)
    err = yest - y
    averr = "av %.2g += %.2g" % (err.mean(), err.std())
    print "LMS yest - y:", averr
    print "LMS weights:", lms.Wt
    if plot:
        import pylab as pl
        fig, ax = pl.subplots( nrows=2 )
        fig.set_size_inches( 12, 8 )
        fig.suptitle( title, fontsize=12 )
        ax[0].plot( y, color="orangered", label="y" )
        ax[0].plot( yest, label="yest" )
        ax[0].legend()
        ax[1].plot( err, label=averr )
        ax[1].legend()
        if plot >= 2:
            pl.savefig( "tmp.png" )
        pl.show()
于 2013-08-20T09:08:32.243 回答
10

您应该检查 Padasip 库https://pypi.python.org/pypi/padasip

在这个库中实现了多个自适应滤波器。您可以直接使用它,也可以调查那里的过滤器是如何创建的(源代码在 github https://github.com/matousc89/padasip上)

如果您只想针对您的案例测试任何已实现的自适应滤波器的适用性,请参阅本教程Padasip Adaptive Filters Basics - Noise Cancelation, System Identification and Signal Prediction

于 2016-05-12T19:58:26.370 回答