我认为你所追求的操作——取消透视表——被称为“熔化”。在这种情况下,困难的部分可以通过 来完成pd.melt
,其他的基本上都是重命名和重新排序:
df = pd.DataFrame(sample).reset_index().rename(columns={"index": "item"})
df = pd.melt(df, "item", var_name="user").dropna()
df = df[["user", "item", "value"]].reset_index(drop=True)
简单地调用DataFrame
会产生一些包含我们想要的信息但形状错误的东西:
>>> df = pd.DataFrame(sample)
>>> df
user1 user2 user3
item1 2.5 2.5 NaN
item2 3.5 3.0 4.5
item3 3.0 3.5 NaN
item4 3.5 4.0 NaN
item5 2.5 NaN 1.0
item6 3.0 NaN 4.0
因此,让我们将索引提升为真正的列并改进名称:
>>> df = pd.DataFrame(sample).reset_index().rename(columns={"index": "item"})
>>> df
item user1 user2 user3
0 item1 2.5 2.5 NaN
1 item2 3.5 3.0 4.5
2 item3 3.0 3.5 NaN
3 item4 3.5 4.0 NaN
4 item5 2.5 NaN 1.0
5 item6 3.0 NaN 4.0
然后我们可以调用pd.melt
来翻柱。如果我们没有指定我们想要的变量名“user”,它会给它一个无聊的名字“variable”(就像它给数据本身一个无聊的名字“value”一样)。
>>> df = pd.melt(df, "item", var_name="user").dropna()
>>> df
item user value
0 item1 user1 2.5
1 item2 user1 3.5
2 item3 user1 3.0
3 item4 user1 3.5
4 item5 user1 2.5
5 item6 user1 3.0
6 item1 user2 2.5
7 item2 user2 3.0
8 item3 user2 3.5
9 item4 user2 4.0
13 item2 user3 4.5
16 item5 user3 1.0
17 item6 user3 4.0
最后,我们可以对索引进行重新排序和重新编号:
>>> df = df[["user", "item", "value"]].reset_index(drop=True)
>>> df
user item value
0 user1 item1 2.5
1 user1 item2 3.5
2 user1 item3 3.0
3 user1 item4 3.5
4 user1 item5 2.5
5 user1 item6 3.0
6 user2 item1 2.5
7 user2 item2 3.0
8 user2 item3 3.5
9 user2 item4 4.0
10 user3 item2 4.5
11 user3 item5 1.0
12 user3 item6 4.0
melt
一旦你习惯了它就非常有用。通常,就像这里一样,您在前后进行一些重命名/重新排序。