再会!
我正在尝试在 python 中学习多线程功能,并编写了以下代码:
import time, argparse, threading, sys, subprocess, os
def item_fun(items, indices, lock):
for index in indices:
items[index] = items[index]*items[index]*items[index]
def map(items, cores):
count = len(items)
cpi = count/cores
threads = []
lock = threading.Lock()
for core in range(cores):
thread = threading.Thread(target=item_fun, args=(items, range(core*cpi, core*cpi + cpi), lock))
threads.append(thread)
thread.start()
item_fun(items, range((core+1)*cpi, count), lock)
for thread in threads:
thread.join()
parser = argparse.ArgumentParser(description='cube', usage='%(prog)s [options] -n')
parser.add_argument('-n', action='store', help='number', dest='n', default='1000000', metavar = '')
parser.add_argument('-mp', action='store_true', help='multi thread', dest='mp', default='True')
args = parser.parse_args()
items = range(NUMBER_OF_ITEMS)
# print 'items before:'
# print items
mp = args.mp
if mp is True:
NUMBER_OF_PROCESSORS = int(os.getenv("NUMBER_OF_PROCESSORS"))
NUMBER_OF_ITEMS = int(args.n)
start = time.time()
map(items, NUMBER_OF_PROCESSORS)
end = time.time()
else:
NUMBER_OF_ITEMS = int(args.n)
start = time.time()
item_fun(items, range(NUMBER_OF_ITEMS), None)
end = time.time()
#print 'items after:'
#print items
print 'time elapsed: ', (end - start)
当我使用 mp 参数时,它的工作速度较慢,在我有 4 个 CPU 的机器上,计算结果大约需要 0.5 秒,而如果我使用单线程则需要大约 0.3 秒。
难道我做错了什么?
我知道有 Pool.map() 等,但它产生子进程而不是线程,据我所知它工作得更快,但我想编写自己的线程池。