减少矩阵的行可以通过三种方式使用CUDA Thrust来解决(它们可能不是唯一的,但解决这一点超出了范围)。正如同一 OP 所承认的那样,对于此类问题,最好使用 CUDA Thrust。此外,使用cuBLAS的方法也是可能的。
方法 #1 -reduce_by_key
这是此Thrust 示例页面中建议的方法。它包括一个使用make_discard_iterator
.
方法 #2 -transform
这是 CUDA Thrust 的 Robert Crovella 建议的方法:reduce_by_key 仅针对数组中的某些值,基于“键”数组中的值。
方法#3 -inclusive_scan_by_key
这是 Eric 在How to normalize matrix columns in CUDA with max performance? 中建议的方法?.
方法#4 -cublas<t>gemv
它用于cuBLAS
gemv
将相关矩阵乘以1
's 列。
完整代码
这是浓缩这两种方法的代码。Utilities.cu
和Utilities.cuh
文件在此处保留,此处省略。TimingGPU.cu
和在这里TimingGPU.cuh
维护,也被省略了。
#include <cublas_v2.h>
#include <thrust/host_vector.h>
#include <thrust/device_vector.h>
#include <thrust/generate.h>
#include <thrust/reduce.h>
#include <thrust/functional.h>
#include <thrust/random.h>
#include <thrust/sequence.h>
#include <stdio.h>
#include <iostream>
#include "Utilities.cuh"
#include "TimingGPU.cuh"
// --- Required for approach #2
__device__ float *vals;
/**************************************************************/
/* CONVERT LINEAR INDEX TO ROW INDEX - NEEDED FOR APPROACH #1 */
/**************************************************************/
template <typename T>
struct linear_index_to_row_index : public thrust::unary_function<T,T> {
T Ncols; // --- Number of columns
__host__ __device__ linear_index_to_row_index(T Ncols) : Ncols(Ncols) {}
__host__ __device__ T operator()(T i) { return i / Ncols; }
};
/******************************************/
/* ROW_REDUCTION - NEEDED FOR APPROACH #2 */
/******************************************/
struct row_reduction {
const int Ncols; // --- Number of columns
row_reduction(int _Ncols) : Ncols(_Ncols) {}
__device__ float operator()(float& x, int& y ) {
float temp = 0.f;
for (int i = 0; i<Ncols; i++)
temp += vals[i + (y*Ncols)];
return temp;
}
};
/**************************/
/* NEEDED FOR APPROACH #3 */
/**************************/
template<typename T>
struct MulC: public thrust::unary_function<T, T>
{
T C;
__host__ __device__ MulC(T c) : C(c) { }
__host__ __device__ T operator()(T x) { return x * C; }
};
/********/
/* MAIN */
/********/
int main()
{
const int Nrows = 5; // --- Number of rows
const int Ncols = 8; // --- Number of columns
// --- Random uniform integer distribution between 10 and 99
thrust::default_random_engine rng;
thrust::uniform_int_distribution<int> dist(10, 99);
// --- Matrix allocation and initialization
thrust::device_vector<float> d_matrix(Nrows * Ncols);
for (size_t i = 0; i < d_matrix.size(); i++) d_matrix[i] = (float)dist(rng);
TimingGPU timerGPU;
/***************/
/* APPROACH #1 */
/***************/
timerGPU.StartCounter();
// --- Allocate space for row sums and indices
thrust::device_vector<float> d_row_sums(Nrows);
thrust::device_vector<int> d_row_indices(Nrows);
// --- Compute row sums by summing values with equal row indices
//thrust::reduce_by_key(thrust::make_transform_iterator(thrust::counting_iterator<int>(0), linear_index_to_row_index<int>(Ncols)),
// thrust::make_transform_iterator(thrust::counting_iterator<int>(0), linear_index_to_row_index<int>(Ncols)) + (Nrows*Ncols),
// d_matrix.begin(),
// d_row_indices.begin(),
// d_row_sums.begin(),
// thrust::equal_to<int>(),
// thrust::plus<float>());
thrust::reduce_by_key(
thrust::make_transform_iterator(thrust::make_counting_iterator(0), linear_index_to_row_index<int>(Ncols)),
thrust::make_transform_iterator(thrust::make_counting_iterator(0), linear_index_to_row_index<int>(Ncols)) + (Nrows*Ncols),
d_matrix.begin(),
thrust::make_discard_iterator(),
d_row_sums.begin());
printf("Timing for approach #1 = %f\n", timerGPU.GetCounter());
// --- Print result
for(int i = 0; i < Nrows; i++) {
std::cout << "[ ";
for(int j = 0; j < Ncols; j++)
std::cout << d_matrix[i * Ncols + j] << " ";
std::cout << "] = " << d_row_sums[i] << "\n";
}
/***************/
/* APPROACH #2 */
/***************/
timerGPU.StartCounter();
thrust::device_vector<float> d_row_sums_2(Nrows, 0);
float *s_vals = thrust::raw_pointer_cast(&d_matrix[0]);
gpuErrchk(cudaMemcpyToSymbol(vals, &s_vals, sizeof(float *)));
thrust::transform(d_row_sums_2.begin(), d_row_sums_2.end(), thrust::counting_iterator<int>(0), d_row_sums_2.begin(), row_reduction(Ncols));
printf("Timing for approach #2 = %f\n", timerGPU.GetCounter());
for(int i = 0; i < Nrows; i++) {
std::cout << "[ ";
for(int j = 0; j < Ncols; j++)
std::cout << d_matrix[i * Ncols + j] << " ";
std::cout << "] = " << d_row_sums_2[i] << "\n";
}
/***************/
/* APPROACH #3 */
/***************/
timerGPU.StartCounter();
thrust::device_vector<float> d_row_sums_3(Nrows, 0);
thrust::device_vector<float> d_temp(Nrows * Ncols);
thrust::inclusive_scan_by_key(
thrust::make_transform_iterator(thrust::make_counting_iterator(0), linear_index_to_row_index<int>(Ncols)),
thrust::make_transform_iterator(thrust::make_counting_iterator(0), linear_index_to_row_index<int>(Ncols)) + (Nrows*Ncols),
d_matrix.begin(),
d_temp.begin());
thrust::copy(
thrust::make_permutation_iterator(
d_temp.begin() + Ncols - 1,
thrust::make_transform_iterator(thrust::make_counting_iterator(0), MulC<int>(Ncols))),
thrust::make_permutation_iterator(
d_temp.begin() + Ncols - 1,
thrust::make_transform_iterator(thrust::make_counting_iterator(0), MulC<int>(Ncols))) + Nrows,
d_row_sums_3.begin());
printf("Timing for approach #3 = %f\n", timerGPU.GetCounter());
for(int i = 0; i < Nrows; i++) {
std::cout << "[ ";
for(int j = 0; j < Ncols; j++)
std::cout << d_matrix[i * Ncols + j] << " ";
std::cout << "] = " << d_row_sums_3[i] << "\n";
}
/***************/
/* APPROACH #4 */
/***************/
cublasHandle_t handle;
timerGPU.StartCounter();
cublasSafeCall(cublasCreate(&handle));
thrust::device_vector<float> d_row_sums_4(Nrows);
thrust::device_vector<float> d_ones(Ncols, 1.f);
float alpha = 1.f;
float beta = 0.f;
cublasSafeCall(cublasSgemv(handle, CUBLAS_OP_T, Ncols, Nrows, &alpha, thrust::raw_pointer_cast(d_matrix.data()), Ncols,
thrust::raw_pointer_cast(d_ones.data()), 1, &beta, thrust::raw_pointer_cast(d_row_sums_4.data()), 1));
printf("Timing for approach #4 = %f\n", timerGPU.GetCounter());
for(int i = 0; i < Nrows; i++) {
std::cout << "[ ";
for(int j = 0; j < Ncols; j++)
std::cout << d_matrix[i * Ncols + j] << " ";
std::cout << "] = " << d_row_sums_4[i] << "\n";
}
return 0;
}
计时结果(在 Kepler K20c 上测试)
Matrix size #1 #1-v2 #2 #3 #4 #4 (no plan)
100 x 100 0.63 1.00 0.10 0.18 139.4 0.098
1000 x 1000 1.25 1.12 3.25 1.04 101.3 0.12
5000 x 5000 8.38 15.3 16.05 13.8 111.3 1.14
100 x 5000 1.25 1.52 2.92 1.75 101.2 0.40
5000 x 100 1.35 1.99 0.37 1.74 139.2 0.14
似乎方法#1 和#3 优于方法#2,除了在少量列的情况下。然而,最好的方法是方法#4,它比其他方法更方便,前提是创建计划所需的时间可以在计算过程中摊销。