根据您的回答,我合成了一个 ggplot ACF / PACF 绘图方法:
    require(zoo)
    require(tseries)
    require(ggplot2)
    require(cowplot)
    ts= zoo(data[[2]]) # data[[2]] because my time series data was the second column
    # Plot ACP / ACF with IC
    # How to compute IC for ACF and PACF :
    # https://stats.stackexchange.com/questions/211628/how-is-the-confidence-interval-calculated-for-the-acf-function
    ic_alpha= function(alpha, acf_res){
      return(qnorm((1 + (1 - alpha))/2)/sqrt(acf_res$n.used))
    }
    ggplot_acf_pacf= function(res_, lag, label, alpha= 0.05){
      df_= with(res_, data.frame(lag, acf))
      
      # IC alpha
      lim1= ic_alpha(alpha, res_)
      lim0= -lim1
      
      
      ggplot(data = df_, mapping = aes(x = lag, y = acf)) +
        geom_hline(aes(yintercept = 0)) +
        geom_segment(mapping = aes(xend = lag, yend = 0)) +
        labs(y= label) +
        geom_hline(aes(yintercept = lim1), linetype = 2, color = 'blue') +
        geom_hline(aes(yintercept = lim0), linetype = 2, color = 'blue')
    }
    acf_ts= ggplot_acf_pacf(res_= acf(ts, plot= F)
                   , 20
                   , label= "ACF")
    pacf_ts= ggplot_acf_pacf(res_= pacf(ts, plot= F)
                         , 20
                         , label= "PACF")
    # Concat our plots
    acf_pacf= plot_grid(acf_ts, pacf_ts, ncol = 2, nrow = 1)
    acf_pacf
结果:
