所以我有一个条形图,其中 y 轴是日志(频率)。单看它,酒吧似乎呈指数级下降,但我想肯定地知道这一点。我想要做的也是在同一张图上绘制一个指数。因此,如果我的条低于指数,我会知道我的条以指数方式或比指数更快地下降,如果条位于指数之上,我会知道它们不会以指数方式下降。如何在条形图上绘制指数?
如果有帮助,这是我的图表:
所以我有一个条形图,其中 y 轴是日志(频率)。单看它,酒吧似乎呈指数级下降,但我想肯定地知道这一点。我想要做的也是在同一张图上绘制一个指数。因此,如果我的条低于指数,我会知道我的条以指数方式或比指数更快地下降,如果条位于指数之上,我会知道它们不会以指数方式下降。如何在条形图上绘制指数?
如果有帮助,这是我的图表:
如果您试图拟合指数函数的密度,您可能应该绘制密度直方图(而不是频率)。请参阅有关如何在 R 中绘制分布的问题。
我就是这样做的。
x.gen <- rexp(1000, rate = 3)
hist(x.gen, prob = TRUE)
library(MASS)
x.est <- fitdistr(x.gen, "exponential")$estimate
curve(dexp(x, rate = x.est), add = TRUE, col = "red", lwd = 2)
目视检查两个分布是否相同的一种方法是使用分位数-分位数图或简称 QQ 图。通常这是在检查分布是否遵循标准正态时完成的。
基本思想是根据一些理论分位数绘制您的数据,如果它与该分布匹配,您将看到一条直线。例如:
x <- qnorm(seq(0,1,l=1002)) # Theoretical normal quantiles
x <- x[-c(1, length(x))] # Drop ends because they are -Inf and Inf
y <- rnorm(1000) # Actual data. 1000 points drawn from a normal distribution
l.1 <- lm(sort(y)~sort(x))
qqplot(x, y, xlab="Theoretical Quantiles", ylab="Actual Quantiles")
abline(coef(l.1)[1], coef(l.1)[2])
在完美条件下,根据数据绘制理论分位数时,您应该看到一条直线。因此,您可以将数据与您认为它会遵循的指数函数进行相同的绘制。