就像我是自虐狂一样,我正在尝试学习创建模型视图和透视矩阵背后的所有矩阵数学,以便我可以编写自己的函数来生成它们,而无需使用 JS 库。
我了解矩阵的概念,但不了解如何实际生成它们。我一直在密切关注 glMatrix 库,我有以下问题:
1)以下mat4.perspecive
方法发生了什么?
/**
* Generates a perspective projection matrix with the given bounds
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {number} fovy Vertical field of view in radians
* @param {number} aspect Aspect ratio. typically viewport width/height
* @param {number} near Near bound of the frustum
* @param {number} far Far bound of the frustum
* @returns {mat4} out
*/
mat4.perspective = function (out, fovy, aspect, near, far) {
var f = 1.0 / Math.tan(fovy / 2),
nf = 1 / (near - far);
out[0] = f / aspect;
out[1] = 0;
out[2] = 0;
out[3] = 0;
out[4] = 0;
out[5] = f;
out[6] = 0;
out[7] = 0;
out[8] = 0;
out[9] = 0;
out[10] = (far + near) * nf;
out[11] = -1;
out[12] = 0;
out[13] = 0;
out[14] = (2 * far * near) * nf;
out[15] = 0;
return out;
};
具体来说,我得到了Math.tan(fovy / 2)
正在计算的内容,但为什么要取它的倒数呢?同样,为什么要取近边界和远边界之差的倒数?另外,为什么out[11]
设置为-1
以及存储的值是什么out[14]
?
2)库中的以下mat4.lookAt
方法也让我感到困惑:
/**
* Generates a look-at matrix with the given eye position, focal point,
* and up axis
*
* @param {mat4} out mat4 frustum matrix will be written into
* @param {vec3} eye Position of the viewer
* @param {vec3} center Point the viewer is looking at
* @param {vec3} up vec3 pointing up
* @returns {mat4} out
*/
mat4.lookAt = function (out, eye, center, up) {
var x0, x1, x2, y0, y1, y2, z0, z1, z2, len,
eyex = eye[0],
eyey = eye[1],
eyez = eye[2],
upx = up[0],
upy = up[1],
upz = up[2],
centerx = center[0],
centery = center[1],
centerz = center[2];
if (Math.abs(eyex - centerx) < GLMAT_EPSILON &&
Math.abs(eyey - centery) < GLMAT_EPSILON &&
Math.abs(eyez - centerz) < GLMAT_EPSILON) {
return mat4.identity(out);
}
z0 = eyex - centerx;
z1 = eyey - centery;
z2 = eyez - centerz;
len = 1 / Math.sqrt(z0 * z0 + z1 * z1 + z2 * z2);
z0 *= len;
z1 *= len;
z2 *= len;
x0 = upy * z2 - upz * z1;
x1 = upz * z0 - upx * z2;
x2 = upx * z1 - upy * z0;
len = Math.sqrt(x0 * x0 + x1 * x1 + x2 * x2);
if (!len) {
x0 = 0;
x1 = 0;
x2 = 0;
} else {
len = 1 / len;
x0 *= len;
x1 *= len;
x2 *= len;
}
y0 = z1 * x2 - z2 * x1;
y1 = z2 * x0 - z0 * x2;
y2 = z0 * x1 - z1 * x0;
len = Math.sqrt(y0 * y0 + y1 * y1 + y2 * y2);
if (!len) {
y0 = 0;
y1 = 0;
y2 = 0;
} else {
len = 1 / len;
y0 *= len;
y1 *= len;
y2 *= len;
}
out[0] = x0;
out[1] = y0;
out[2] = z0;
out[3] = 0;
out[4] = x1;
out[5] = y1;
out[6] = z1;
out[7] = 0;
out[8] = x2;
out[9] = y2;
out[10] = z2;
out[11] = 0;
out[12] = -(x0 * eyex + x1 * eyey + x2 * eyez);
out[13] = -(y0 * eyex + y1 * eyey + y2 * eyez);
out[14] = -(z0 * eyex + z1 * eyey + z2 * eyez);
out[15] = 1;
return out;
};
与mat4.perspecive
方法类似,为什么要计算向量长度的倒数?另外,为什么该值会乘以z0
,z1
和z2
值?对x0
-x2
变量和y0
-y2
变量执行相同的操作。为什么?out[12]
最后,为-设置的值是什么意思out[14]
?
3)最后,我对这个方法有几个问题mat4.translate
。具体来说,我买了《Professional WebGL Programming: Developing 3D Graphics for the Web 》一书,它说以下 4x4 矩阵用于转换顶点:
1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1
但是,当我查看 glMatrix 库中的以下mat4.translate
方法时,我发现out[12]
-out[15]
是通过一些复杂的方程设置的。为什么要设置这些值?
/**
* Translate a mat4 by the given vector
*
* @param {mat4} out the receiving matrix
* @param {mat4} a the matrix to translate
* @param {vec3} v vector to translate by
* @returns {mat4} out
*/
mat4.translate = function (out, a, v) {
var x = v[0], y = v[1], z = v[2],
a00, a01, a02, a03,
a10, a11, a12, a13,
a20, a21, a22, a23;
if (a === out) {
out[12] = a[0] * x + a[4] * y + a[8] * z + a[12];
out[13] = a[1] * x + a[5] * y + a[9] * z + a[13];
out[14] = a[2] * x + a[6] * y + a[10] * z + a[14];
out[15] = a[3] * x + a[7] * y + a[11] * z + a[15];
} else {
a00 = a[0]; a01 = a[1]; a02 = a[2]; a03 = a[3];
a10 = a[4]; a11 = a[5]; a12 = a[6]; a13 = a[7];
a20 = a[8]; a21 = a[9]; a22 = a[10]; a23 = a[11];
out[0] = a00; out[1] = a01; out[2] = a02; out[3] = a03;
out[4] = a10; out[5] = a11; out[6] = a12; out[7] = a13;
out[8] = a20; out[9] = a21; out[10] = a22; out[11] = a23;
out[12] = a00 * x + a10 * y + a20 * z + a[12];
out[13] = a01 * x + a11 * y + a21 * z + a[13];
out[14] = a02 * x + a12 * y + a22 * z + a[14];
out[15] = a03 * x + a13 * y + a23 * z + a[15];
}
return out;
};
谢谢大家的时间,很抱歉所有的问题。我来自 JS 背景,而不是 OpenGL/3D 编程背景,所以我很难理解所有矩阵背后的数学。
如果有任何很好的资源可以解释用于这些方程式/方法的数学,那也很好。谢谢。