几周前我问了一个问题,关于如何在 R 中进行优化(使用 Optimize R 优化向量)。现在我对 R 中的基本优化有了适当的掌握,我想开始使用 GA 来解决解决方案。
给定目标函数:
div.ratio <- function(weight, vol, cov.mat){
weight <- weight / sum(weight)
dr <- (t(weight) %*% vol) / (sqrt(t(weight) %*% cov.mat %*% (weight)))
return(-dr)
}
我正在使用 genalg 包进行优化,特别是“rbga.bin”函数。但问题是似乎不能传递多个参数,即不能传递 vol 和 cov.mat。我是否遗漏了什么或理解错误。
编辑:在 genalg 包中,有一个名为 rbga.bin 的函数,这是我正在使用的函数。
这是上一个问题中可以帮助您入门的简单代码:
rm(list=ls())
require(RCurl)
sit = getURLContent('https://github.com/systematicinvestor/SIT/raw/master/sit.gz', binary=TRUE, followlocation = TRUE, ssl.verifypeer = FALSE)
con = gzcon(rawConnection(sit, 'rb'))
source(con)
close(con)
load.packages('quantmod')
data <- new.env()
tickers<-spl("VTI,VGK,VWO,GLD,VNQ,TIP,TLT,AGG,LQD")
getSymbols(tickers, src = 'yahoo', from = '1980-01-01', env = data, auto.assign = T)
for(i in ls(data)) data[[i]] = adjustOHLC(data[[i]], use.Adjusted=T)
bt.prep(data, align='remove.na', dates='1990::2013')
prices<-data$prices[,-10]
ret<-na.omit(prices/mlag(prices) - 1)
vol<-apply(ret,2,sd)
cov.mat<-cov(ret)
out <- optim(par = rep(1 / length(vol), length(vol)), # initial guess
fn = div.ratio,
vol = vol,
cov.mat = cov.mat,
method = "L-BFGS-B",
lower = 0,
upper = 1)
opt.weights <- out$par / sum(out$par) #optimal weights
虽然上面的 optim 函数工作得很好,但我在想是否可以使用 GA 算法来重现它。因此,将来如果我正在寻找多个目标,与 GA 相比,我将能够更快地做到这一点。(我不确定它是否更快,但这是找出答案的步骤)
GAmodel <- rbga.bin(size = 7, #genes
popSize = 200, #initial number of chromosomes
iters = 100, #number of iterations
mutationChance = 0.01, #chance of mutation
evalFunc = div.ratio) #objective function
执行上述操作似乎会产生错误,因为 div.ratio 需要额外的参数,所以我正在寻找一些帮助来构建我的问题,以便它能够产生最佳答案。我希望上面的编辑可以澄清事情。
谢谢