运行以下代码在 NVIDIA Visual Profiler 中写入 1 GB 全局内存,我得到:
- 100% 存储效率
- 69.4% (128.6 GB/s) DRAM 利用率
- 18.3% 总重放开销
- 18.3% 全局内存重放开销。
内存写入应该是合并的,内核中没有分歧,所以问题是全局内存重放开销来自哪里?我在 Ubuntu 13.04 上使用 nvidia-cuda-toolkit 版本 5.0.35-4ubuntu1 运行它。
#include <cuda.h>
#include <unistd.h>
#include <getopt.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <stdint.h>
#include <ctype.h>
#include <sched.h>
#include <assert.h>
static void
HandleError( cudaError_t err, const char *file, int line )
{
if (err != cudaSuccess) {
printf( "%s in %s at line %d\n", cudaGetErrorString(err), file, line);
exit( EXIT_FAILURE );
}
}
#define HANDLE_ERROR(err) (HandleError(err, __FILE__, __LINE__))
// Global memory writes
__global__ void
kernel_write(uint32_t *start, uint32_t entries)
{
uint32_t tid = threadIdx.x + blockIdx.x*blockDim.x;
while (tid < entries) {
start[tid] = tid;
tid += blockDim.x*gridDim.x;
}
}
int main(int argc, char *argv[])
{
uint32_t *gpu_mem; // Memory pointer
uint32_t n_blocks = 256; // Blocks per grid
uint32_t n_threads = 192; // Threads per block
uint32_t n_bytes = 1073741824; // Transfer size (1 GB)
float elapsedTime; // Elapsed write time
// Allocate 1 GB of memory on the device
HANDLE_ERROR( cudaMalloc((void **)&gpu_mem, n_bytes) );
// Create events
cudaEvent_t start, stop;
HANDLE_ERROR( cudaEventCreate(&start) );
HANDLE_ERROR( cudaEventCreate(&stop) );
// Write to global memory
HANDLE_ERROR( cudaEventRecord(start, 0) );
kernel_write<<<n_blocks, n_threads>>>(gpu_mem, n_bytes/4);
HANDLE_ERROR( cudaGetLastError() );
HANDLE_ERROR( cudaEventRecord(stop, 0) );
HANDLE_ERROR( cudaEventSynchronize(stop) );
HANDLE_ERROR( cudaEventElapsedTime(&elapsedTime, start, stop) );
// Report exchange time
printf("#Delay(ms) BW(GB/s)\n");
printf("%10.6f %10.6f\n", elapsedTime, 1e-6*n_bytes/elapsedTime);
// Destroy events
HANDLE_ERROR( cudaEventDestroy(start) );
HANDLE_ERROR( cudaEventDestroy(stop) );
// Free memory
HANDLE_ERROR( cudaFree(gpu_mem) );
return 0;
}