我有一个包含 500 个流感序列的距离矩阵。我想将其转换为柱状格式,进行 250,000 次成对比较。有没有一个功能可以让我快速做到这一点?
下面是我正在使用的数据集。索引是“Accession”列,我将数据表示为 Pandas DataFrame。
CY135678 CY142013 CY130339 CY130379 CY130460 CY135850 CY135930 CY143958 CY142889 CY141341 CY143073 CY142145 CY142817 CY142417 CY142985 CY136196 CY130412 CY135744 CY135326 CY135502
Accession
CY135678 1.000000 0.959670 0.937148 0.932813 0.972692 0.951452 0.996966 0.998266 0.953619 0.993498 0.920628 0.956635 0.921936 0.956030 0.902904 0.968791 0.998700 0.952319 0.917642 0.922440
CY142013 0.959670 1.000000 0.939289 0.936253 0.963573 0.973981 0.956635 0.957936 0.974848 0.954033 0.923245 0.976149 0.924117 0.975620 0.913270 0.960104 0.958369 0.974848 0.923244 0.925926
CY130339 0.937148 0.939289 1.000000 0.975389 0.942783 0.938256 0.934114 0.935847 0.940415 0.935233 0.930222 0.939722 0.930659 0.939051 0.917098 0.938882 0.935847 0.939119 0.927612 0.927233
CY130379 0.932813 0.936253 0.975389 1.000000 0.935847 0.936960 0.929779 0.931946 0.939119 0.931347 0.923681 0.935820 0.924553 0.935133 0.915371 0.932813 0.931513 0.938687 0.925444 0.920697
CY130460 0.972692 0.963573 0.942783 0.935847 1.000000 0.955787 0.969658 0.970958 0.957087 0.966623 0.921936 0.961839 0.922809 0.961254 0.907239 0.991764 0.971391 0.957087 0.917642 0.920697
CY135850 0.951452 0.973981 0.938256 0.936960 0.955787 1.000000 0.947984 0.949718 0.993092 0.946891 0.922372 0.973114 0.923245 0.972573 0.909758 0.953619 0.950152 0.996546 0.916775 0.925054
CY135930 0.996966 0.956635 0.934114 0.929779 0.969658 0.947984 1.000000 0.996099 0.950152 0.991331 0.919320 0.953599 0.920628 0.952982 0.900737 0.965756 0.996532 0.948851 0.914608 0.919390
CY143958 0.998266 0.957936 0.935847 0.931946 0.970958 0.949718 0.996099 1.000000 0.951886 0.992631 0.919756 0.954900 0.921064 0.954288 0.901170 0.967057 0.997833 0.950585 0.916775 0.921569
CY142889 0.953619 0.974848 0.940415 0.939119 0.957087 0.993092 0.950152 0.951886 1.000000 0.949050 0.922372 0.973981 0.923245 0.973444 0.912349 0.954920 0.952319 0.993092 0.918075 0.925490
CY141341 0.993498 0.954033 0.935233 0.931347 0.966623 0.946891 0.991331 0.992631 0.949050 1.000000 0.919756 0.951431 0.921064 0.950805 0.896805 0.963589 0.993065 0.947755 0.915908 0.925054
CY143073 0.920628 0.923245 0.930222 0.923681 0.921936 0.922372 0.919320 0.919756 0.922372 0.919756 1.000000 0.921500 0.999128 0.917139 0.908853 0.917139 0.920192 0.923245 0.942433 0.938945
CY142145 0.956635 0.976149 0.939722 0.935820 0.961839 0.973114 0.953599 0.954900 0.973981 0.951431 0.921500 1.000000 0.921936 0.999565 0.911969 0.957936 0.955334 0.973981 0.918040 0.923747
CY142817 0.921936 0.924117 0.930659 0.924553 0.922809 0.923245 0.920628 0.921064 0.923245 0.921064 0.999128 0.921936 1.000000 0.917575 0.909725 0.918011 0.921500 0.924117 0.942870 0.939817
CY142417 0.956030 0.975620 0.939051 0.935133 0.961254 0.972573 0.952982 0.954288 0.973444 0.950805 0.917139 0.999565 0.917575 1.000000 0.911189 0.957336 0.954724 0.973444 0.917283 0.923312
CY142985 0.902904 0.913270 0.917098 0.915371 0.907239 0.909758 0.900737 0.901170 0.912349 0.896805 0.908853 0.911969 0.909725 0.911189 1.000000 0.902904 0.901170 0.911917 0.900737 0.905011
CY136196 0.968791 0.960104 0.938882 0.932813 0.991764 0.953619 0.965756 0.967057 0.954920 0.963589 0.917139 0.957936 0.918011 0.957336 0.902904 1.000000 0.967490 0.954920 0.913741 0.916340
CY130412 0.998700 0.958369 0.935847 0.931513 0.971391 0.950152 0.996532 0.997833 0.952319 0.993065 0.920192 0.955334 0.921500 0.954724 0.901170 0.967490 1.000000 0.951019 0.916342 0.921133
CY135744 0.952319 0.974848 0.939119 0.938687 0.957087 0.996546 0.948851 0.950585 0.993092 0.947755 0.923245 0.973981 0.924117 0.973444 0.911917 0.954920 0.951019 1.000000 0.918075 0.925926
CY135326 0.917642 0.923244 0.927612 0.925444 0.917642 0.916775 0.914608 0.916775 0.918075 0.915908 0.942433 0.918040 0.942870 0.917283 0.900737 0.913741 0.916342 0.918075 1.000000 0.949455
CY135502 0.922440 0.925926 0.927233 0.920697 0.920697 0.925054 0.919390 0.921569 0.925490 0.925054 0.938945 0.923747 0.939817 0.923312 0.905011 0.916340 0.921133 0.925926 0.949455 1.000000
我应用后得到的输出affmat.unstack()
如下所示:
Accession
CY135678 CY135678 0.939085
CY142013 0.959670
CY130339 0.937148
CY130379 0.932813
CY130460 0.972692
CY135850 0.951452
CY135930 0.996966
CY143958 0.998266
CY142889 0.953619
CY141341 0.993498
CY143073 0.920628
CY142145 0.956635
CY142817 0.921936
CY142417 0.956030
CY142985 0.902904
...
CY135502 CY135850 0.925054
CY135930 0.919390
CY143958 0.921569
CY142889 0.925490
CY141341 0.925054
CY143073 0.938945
CY142145 0.923747
CY142817 0.939817
CY142417 0.923312
CY142985 0.905011
CY136196 0.916340
CY130412 0.921133
CY135744 0.925926
CY135326 0.949455
CY135502 0.939085
Length: 400, dtype: float64
从输出中可以看出,CY135678 应该与自身的标识为 1.000000,但在应用后变为 0.939085 affmat.unstack()
。这种行为有解释吗?有什么办法可以让原始值正确堆叠?