是否有任何库具有某些功能,允许通过其监视外部进程的事件pid_t
?我的意思是,监视外部进程是否已退出,或者它是否创建了一个或多个子进程(带有fork
),或者它是否已成为另一个可执行映像(通过exec
或posix_spawn
函数族调用),或者是否向它传递了 Unix 信号.
编辑
我需要一些不会干扰被监控程序执行的东西。所以,我不应该使用ptrace
,因为它会在它发出一些信号时停止正在监视的进程,并且在发生这种情况时有必要恢复进程。
使用捕获fork()
. 只要所有子进程也使用预加载库,您将看到所有本地子进程,无论执行方式如何。
这是一个示例实现。
首先,forkmonitor.h
头文件。它定义了从预加载库传递到监控进程的消息:
#ifndef FORKMONITOR_H
#define FORKMONITOR_H
#define FORKMONITOR_ENVNAME "FORKMONITOR_SOCKET"
#ifndef UNIX_PATH_MAX
#define UNIX_PATH_MAX 108
#endif
#define TYPE_EXEC 1 /* When a binary is executed */
#define TYPE_DONE 2 /* exit() or return from main() */
#define TYPE_FORK 3
#define TYPE_VFORK 4
#define TYPE_EXIT 5 /* _exit() or _Exit() */
#define TYPE_ABORT 6 /* abort() */
struct message {
pid_t pid; /* Process ID */
pid_t ppid; /* Parent process ID */
pid_t sid; /* Session ID */
pid_t pgid; /* Process group ID */
uid_t uid; /* Real user ID */
gid_t gid; /* Real group ID */
uid_t euid; /* Effective user ID */
gid_t egid; /* Effective group ID */
unsigned short len; /* Length of data[] */
unsigned char type; /* One of the TYPE_ constants */
char data[0]; /* Optional payload, possibly longer */
};
#endif /* FORKMONITOR_H */
FORKMONITOR_SOCKET
环境变量(由上面的宏命名)FORKMONITOR_ENVNAME
指定监视进程的 Unix 域数据报套接字地址。如果未定义或为空,则不发送监控消息。
这是图书馆本身,libforkmonitor.c
. 请注意,我对代码进行了相当多的简化,省略了多线程初始化(因为库很少调用任何被截获的函数,更罕见的是从多个线程中调用)。最好使用原子内置函数 (__sync_bool_compare_and_swap()) 来更新函数指针,并使用原子 getter (__sync_fetch_and_or(,0)) 来检索函数指针,以避免任何不稳定库的问题。(这对于多线程程序来说是相当安全的,因为指针只会在main()
执行之前被修改。)
#define _POSIX_C_SOURCE 200809L
#define _GNU_SOURCE
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/un.h>
#include <dlfcn.h>
#include <limits.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include "forkmonitor.h"
static pid_t (*actual_fork)(void) = NULL;
static pid_t (*actual_vfork)(void) = NULL;
static void (*actual_abort)(void) = NULL;
static void (*actual__exit)(int) = NULL;
static void (*actual__Exit)(int) = NULL;
static int commfd = -1;
#define MINIMUM_COMMFD 31
static void notify(const int type, struct message *const msg, const size_t extra)
{
const int saved_errno = errno;
msg->pid = getpid();
msg->ppid = getppid();
msg->sid = getsid(0);
msg->pgid = getpgrp();
msg->uid = getuid();
msg->gid = getgid();
msg->euid = geteuid();
msg->egid = getegid();
msg->len = extra;
msg->type = type;
/* Since we don't have any method of dealing with send() errors
* or partial send()s, we just fire one off and hope for the best. */
send(commfd, msg, sizeof (struct message) + extra, MSG_EOR | MSG_NOSIGNAL);
errno = saved_errno;
}
void libforkmonitor_init(void) __attribute__((constructor));
void libforkmonitor_init(void)
{
const int saved_errno = errno;
int result;
/* Save the actual fork() call pointer. */
if (!actual_fork)
*(void **)&actual_fork = dlsym(RTLD_NEXT, "fork");
/* Save the actual vfork() call pointer. */
if (!actual_vfork)
*(void **)&actual_vfork = dlsym(RTLD_NEXT, "vfork");
/* Save the actual abort() call pointer. */
if (!actual_abort)
*(void **)&actual_abort = dlsym(RTLD_NEXT, "abort");
/* Save the actual _exit() call pointer. */
if (!actual__exit)
*(void **)&actual__exit = dlsym(RTLD_NEXT, "_exit");
if (!actual__exit)
*(void **)&actual__exit = dlsym(RTLD_NEXT, "_Exit");
/* Save the actual abort() call pointer. */
if (!actual__Exit)
*(void **)&actual__Exit = dlsym(RTLD_NEXT, "_Exit");
if (!actual__Exit)
*(void **)&actual__Exit = dlsym(RTLD_NEXT, "_exit");
/* Open an Unix domain datagram socket to the observer. */
if (commfd == -1) {
const char *address;
/* Connect to where? */
address = getenv(FORKMONITOR_ENVNAME);
if (address && *address) {
struct sockaddr_un addr;
memset(&addr, 0, sizeof addr);
addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, address, sizeof addr.sun_path - 1);
/* Create and bind the socket. */
commfd = socket(AF_UNIX, SOCK_DGRAM, 0);
if (commfd != -1) {
if (connect(commfd, (const struct sockaddr *)&addr, sizeof (addr)) == -1) {
/* Failed. Close the socket. */
do {
result = close(commfd);
} while (result == -1 && errno == EINTR);
commfd = -1;
}
}
/* Move commfd to a high descriptor, to avoid complications. */
if (commfd != -1 && commfd < MINIMUM_COMMFD) {
const int newfd = MINIMUM_COMMFD;
do {
result = dup2(commfd, newfd);
} while (result == -1 && errno == EINTR);
if (!result) {
do {
result = close(commfd);
} while (result == -1 && errno == EINTR);
commfd = newfd;
}
}
}
}
/* Send an init message, listing the executable path. */
if (commfd != -1) {
size_t len = 128;
struct message *msg = NULL;
while (1) {
ssize_t n;
free(msg);
msg = malloc(sizeof (struct message) + len);
if (!msg) {
len = 0;
break;
}
n = readlink("/proc/self/exe", msg->data, len);
if (n > (ssize_t)0 && (size_t)n < len) {
msg->data[n] = '\0';
len = n + 1;
break;
}
len = (3 * len) / 2;
if (len >= 65536U) {
free(msg);
msg = NULL;
len = 0;
break;
}
}
if (len > 0) {
/* INIT message with executable name */
notify(TYPE_EXEC, msg, len);
free(msg);
} else {
/* INIT message without executable name */
struct message msg2;
notify(TYPE_EXEC, &msg2, sizeof msg2);
}
}
/* Restore errno. */
errno = saved_errno;
}
void libforkmonitor_done(void) __attribute__((destructor));
void libforkmonitor_done(void)
{
const int saved_errno = errno;
int result;
/* Send an exit message, no data. */
if (commfd != -1) {
struct message msg;
notify(TYPE_DONE, &msg, sizeof msg);
}
/* If commfd is open, close it. */
if (commfd != -1) {
do {
result = close(commfd);
} while (result == -1 && errno == EINTR);
}
/* Restore errno. */
errno = saved_errno;
}
/*
* Hooked C library functions.
*/
pid_t fork(void)
{
pid_t result;
if (!actual_fork) {
const int saved_errno = errno;
*(void **)&actual_fork = dlsym(RTLD_NEXT, "fork");
if (!actual_fork) {
errno = EAGAIN;
return (pid_t)-1;
}
errno = saved_errno;
}
result = actual_fork();
if (!result && commfd != -1) {
struct message msg;
notify(TYPE_FORK, &msg, sizeof msg);
}
return result;
}
pid_t vfork(void)
{
pid_t result;
if (!actual_vfork) {
const int saved_errno = errno;
*(void **)&actual_vfork = dlsym(RTLD_NEXT, "vfork");
if (!actual_vfork) {
errno = EAGAIN;
return (pid_t)-1;
}
errno = saved_errno;
}
result = actual_vfork();
if (!result && commfd != -1) {
struct message msg;
notify(TYPE_VFORK, &msg, sizeof msg);
}
return result;
}
void _exit(const int code)
{
if (!actual__exit) {
const int saved_errno = errno;
*(void **)&actual__exit = dlsym(RTLD_NEXT, "_exit");
if (!actual__exit)
*(void **)&actual__exit = dlsym(RTLD_NEXT, "_Exit");
errno = saved_errno;
}
if (commfd != -1) {
struct {
struct message msg;
int extra;
} data;
memcpy(&data.msg.data[0], &code, sizeof code);
notify(TYPE_EXIT, &(data.msg), sizeof (struct message) + sizeof (int));
}
if (actual__exit)
actual__exit(code);
exit(code);
}
void _Exit(const int code)
{
if (!actual__Exit) {
const int saved_errno = errno;
*(void **)&actual__Exit = dlsym(RTLD_NEXT, "_Exit");
if (!actual__Exit)
*(void **)&actual__Exit = dlsym(RTLD_NEXT, "_exit");
errno = saved_errno;
}
if (commfd != -1) {
struct {
struct message msg;
int extra;
} data;
memcpy(&data.msg.data[0], &code, sizeof code);
notify(TYPE_EXIT, &(data.msg), sizeof (struct message) + sizeof (int));
}
if (actual__Exit)
actual__Exit(code);
exit(code);
}
void abort(void)
{
if (!actual_abort) {
const int saved_errno = errno;
*(void **)&actual_abort = dlsym(RTLD_NEXT, "abort");
errno = saved_errno;
}
if (commfd != -1) {
struct message msg;
notify(TYPE_ABORT, &msg, sizeof msg);
}
actual_abort();
exit(127);
}
该libforkmonitor_init()
函数在调用进程之前由运行时链接器自动main()
调用,并libforkmonitor_done()
在进程从main()
或调用返回时调用exit()
。
向libforkmonitor_init()
监视进程打开一个 Unix 域数据报套接字,并将其凭据和路径发送到当前可执行文件。每个子进程(只要仍加载预加载库)在加载后都会执行此操作,因此根本不需要捕获exec*()
或posix_spawn*()
或“popen()”等函数。
C 库函数fork()
并被vfork()
拦截。需要这些拦截来捕获原始程序在不执行任何其他二进制文件的情况下创建从属进程的情况。(至少 GNU C 库在fork()
内部使用,所以这些也会捕获popen()
,posix_spawn()
等。)
此外,C 库函数_exit()
、_Exit()
和abort()
也被拦截。我添加这些是因为一些二进制文件,尤其是 Dash,喜欢使用_exit()
,并且我认为捕获所有形式的正常退出会很好。(但是,由于信号导致的死亡不会被检测到;如果一个二进制文件执行另一个二进制文件,您只会得到新的 EXEC 消息。请注意进程和父进程 ID。)
这是一个简单的监控程序forkmonitor.c
:
#define _POSIX_C_SOURCE 200809L
#include <unistd.h>
#include <stdlib.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <signal.h>
#include <pwd.h>
#include <grp.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#include "forkmonitor.h"
static volatile sig_atomic_t done = 0;
static void done_handler(const int signum)
{
if (!done)
done = signum;
}
static int catch_done(const int signum)
{
struct sigaction act;
sigemptyset(&act.sa_mask);
act.sa_handler = done_handler;
act.sa_flags = 0;
if (sigaction(signum, &act, NULL) == -1)
return errno;
return 0;
}
static const char *username(const uid_t uid)
{
static char buffer[128];
struct passwd *pw;
pw = getpwuid(uid);
if (!pw)
return NULL;
strncpy(buffer, pw->pw_name, sizeof buffer - 1);
buffer[sizeof buffer - 1] = '\0';
return (const char *)buffer;
}
static const char *groupname(const gid_t gid)
{
static char buffer[128];
struct group *gr;
gr = getgrgid(gid);
if (!gr)
return NULL;
strncpy(buffer, gr->gr_name, sizeof buffer - 1);
buffer[sizeof buffer - 1] = '\0';
return (const char *)buffer;
}
int main(int argc, char *argv[])
{
const size_t msglen = 65536;
struct message *msg;
int socketfd, result;
const char *user, *group;
if (catch_done(SIGINT) || catch_done(SIGQUIT) || catch_done(SIGHUP) ||
catch_done(SIGTERM) || catch_done(SIGPIPE)) {
fprintf(stderr, "Cannot set signal handlers: %s.\n", strerror(errno));
return 1;
}
if (argc != 2 || !strcmp(argv[1], "-h") || !strcmp(argv[1], "--help")) {
fprintf(stderr, "\n");
fprintf(stderr, "Usage: %s [ -h | --help ]\n", argv[0]);
fprintf(stderr, " %s MONITOR-SOCKET-PATH\n", argv[0]);
fprintf(stderr, "\n");
fprintf(stderr, "This program outputs events reported by libforkmonitor\n");
fprintf(stderr, "to Unix domain datagram sockets at MONITOR-SOCKET-PATH.\n");
fprintf(stderr, "\n");
return 0;
}
msg = malloc(msglen);
if (!msg) {
fprintf(stderr, "Out of memory.\n");
return 1;
}
socketfd = socket(AF_UNIX, SOCK_DGRAM, 0);
if (socketfd == -1) {
fprintf(stderr, "Cannot create an Unix domain datagram socket: %s.\n", strerror(errno));
return 1;
}
{
struct sockaddr_un addr;
size_t len;
if (argv[1])
len = strlen(argv[1]);
else
len = 0;
if (len < 1 || len >= UNIX_PATH_MAX) {
fprintf(stderr, "%s: Path is too long (max. %d characters)\n", argv[1], UNIX_PATH_MAX - 1);
return 1;
}
memset(&addr, 0, sizeof addr);
addr.sun_family = AF_UNIX;
memcpy(addr.sun_path, argv[1], len + 1); /* Include '\0' at end */
if (bind(socketfd, (struct sockaddr *)&addr, sizeof (addr)) == -1) {
fprintf(stderr, "Cannot bind to %s: %s.\n", argv[1], strerror(errno));
return 1;
}
}
printf("Waiting for connections.\n");
printf("\n");
/* Infinite loop. */
while (!done) {
ssize_t n;
n = recv(socketfd, msg, msglen, 0);
if (n == -1) {
const char *const errmsg = strerror(errno);
fprintf(stderr, "%s.\n", errmsg);
fflush(stderr);
break;
}
if (msglen < sizeof (struct message)) {
fprintf(stderr, "Received a partial message; discarded.\n");
fflush(stderr);
continue;
}
switch (msg->type) {
case TYPE_EXEC:
printf("Received an EXEC message:\n");
break;
case TYPE_DONE:
printf("Received a DONE message:\n");
break;
case TYPE_FORK:
printf("Received a FORK message:\n");
break;
case TYPE_VFORK:
printf("Received a VFORK message:\n");
break;
case TYPE_EXIT:
printf("Received an EXIT message:\n");
break;
case TYPE_ABORT:
printf("Received an ABORT message:\n");
break;
default:
printf("Received an UNKNOWN message:\n");
break;
}
if (msg->type == TYPE_EXEC && (size_t)n > sizeof (struct message)) {
if (*((char *)msg + n - 1) == '\0')
printf("\tExecutable: '%s'\n", (char *)msg + sizeof (struct message));
}
printf("\tProcess ID: %d\n", (int)msg->pid);
printf("\tParent process ID: %d\n", (int)msg->ppid);
printf("\tSession ID: %d\n", (int)msg->sid);
printf("\tProcess group ID: %d\n", (int)msg->pgid);
user = username(msg->uid);
if (user)
printf("\tReal user: '%s' (%d)\n", user, (int)msg->uid);
else
printf("\tReal user: %d\n", (int)msg->uid);
group = groupname(msg->gid);
if (group)
printf("\tReal group: '%s' (%d)\n", group, (int)msg->gid);
else
printf("\tReal group: %d\n", (int)msg->gid);
user = username(msg->euid);
if (user)
printf("\tEffective user: '%s' (%d)\n", user, (int)msg->euid);
else
printf("\tEffective user: %d\n", (int)msg->euid);
group = groupname(msg->egid);
if (group)
printf("\tEffective group: '%s' (%d)\n", group, (int)msg->egid);
else
printf("\tEffective group: %d\n", (int)msg->egid);
printf("\n");
fflush(stdout);
}
do {
result = close(socketfd);
} while (result == -1 && errno == EINTR);
unlink(argv[1]);
return 0;
}
它采用单个命令行参数,即 Unix 域套接字地址。它应该是绝对文件系统路径。
INT
您可以通过( Ctrl+C)、HUP
、QUIT
和TERM
信号停止监控程序。
使用编译库
gcc -W -Wall -O3 -fpic -fPIC -c libforkmonitor.c
gcc -shared -Wl,-soname,libforkmonitor.so libforkmonitor.o -ldl -o libforkmonitor.so
和监控程序使用
gcc -W -Wall -O3 forkmonitor.c -o forkmonitor
在一个终端窗口中,首先启动 forkmonitor:
./forkmonitor "$PWD/commsocket"
在另一个终端窗口中,在同一目录中,运行受监视的命令,自动预加载libforkmonitor.so
库并为监视器指定套接字:
env "LD_PRELOAD=$PWD/libforkmonitor.so" "FORKMONITOR_SOCKET=$PWD/commsocket" command args...
请注意,因为这使用LD_PRELOAD
和FORKMONITOR_SOCKET
环境变量,所以如果子进程的父进程修改环境(删除两个环境变量),并且在执行setuid
或setgid
二进制文件时,子进程将被忽略。可以通过消除环境变量并对其进行硬编码来避免这种限制。
运行时链接器不会为setuid
或setgid
二进制文件预加载库,除非该库位于标准库目录之一中,并且还标记为setgid
.
添加库名称/etc/ld.so.preload
将为所有二进制文件预加载库,但您可能应该添加一种机制libforkmonitor_init()
,将监控限制为所需的二进制文件和/或指定的真实用户(当运行 setuid 二进制文件时有效用户发生变化)。
例如,当我运行
env "LD_PRELOAD=$PWD/libforkmonitor.so" "FORKMONITOR_SOCKET=$PWD/commsocket" sh -c 'date ; ls -laF'
监控输出为(匿名):
Received an EXEC message:
Executable: 'bin/dash'
Process ID: 11403
Parent process ID: 9265
Session ID: 9265
Process group ID: 11403
Real user: 'username' (1000)
Real group: 'username' (1000)
Effective user: 'username' (1000)
Effective group: 'username' (1000)
Received a FORK message:
Process ID: 11404
Parent process ID: 11403
Session ID: 9265
Process group ID: 11403
Real user: 'username' (1000)
Real group: 'username' (1000)
Effective user: 'username' (1000)
Effective group: 'username' (1000)
Received an EXEC message:
Executable: 'bin/date'
Process ID: 11404
Parent process ID: 11403
Session ID: 9265
Process group ID: 11403
Real user: 'username' (1000)
Real group: 'username' (1000)
Effective user: 'username' (1000)
Effective group: 'username' (1000)
Received a DONE message:
Process ID: 11404
Parent process ID: 11403
Session ID: 9265
Process group ID: 11403
Real user: 'username' (1000)
Real group: 'username' (1000)
Effective user: 'username' (1000)
Effective group: 'username' (1000)
Received a FORK message:
Process ID: 11405
Parent process ID: 11403
Session ID: 9265
Process group ID: 11403
Real user: 'username' (1000)
Real group: 'username' (1000)
Effective user: 'username' (1000)
Effective group: 'username' (1000)
Received an EXEC message:
Executable: 'bin/ls'
Process ID: 11405
Parent process ID: 11403
Session ID: 9265
Process group ID: 11403
Real user: 'username' (1000)
Real group: 'username' (1000)
Effective user: 'username' (1000)
Effective group: 'username' (1000)
Received a DONE message:
Process ID: 11405
Parent process ID: 11403
Session ID: 9265
Process group ID: 11403
Real user: 'username' (1000)
Real group: 'username' (1000)
Effective user: 'username' (1000)
Effective group: 'username' (1000)
Received an EXIT message:
Process ID: 11403
Parent process ID: 9265
Session ID: 9265
Process group ID: 11403
Real user: 'username' (1000)
Real group: 'username' (1000)
Effective user: 'username' (1000)
Effective group: 'username' (1000)
这是一个非常轻量级的进程树监控解决方案。除了进程的启动、退出和调用其中一个被截获的函数(fork()
, vfork()
, _exit()
, _Exit()
, abort()
)之外,程序的执行完全不会受到影响。因为图书馆是如此轻量级,即使是那些受影响的也只会受到非常非常小的影响;可能不足以可靠地测量。
显然可以拦截其他函数,和/或使用双向通信,“暂停”拦截函数的执行,直到监控应用程序响应。
总体上存在一些缺陷,尤其是与 setuid/setgid 进程和生成新环境的进程(省略LD_PRELOAD
和FORKMONITOR_SOCKET
环境变量)相关,但如果超级用户权限可用,则可以解决这些问题。
希望您能从中找到有用的信息。问题?
如果您可以以 root 身份运行,那么您可以使用 netlink 接口 proc events:
http://bewareofgeek.livejournal.com/2945.html
我刚刚在 Fedora 17 x86_64 上干净地编译了它,它给了我这个:
[root@hip1 yotest]# ./proc
set mcast listen ok
fork: parent tid=2358 pid=2358 -> child tid=21007 pid=21007
exec: tid=21007 pid=21007
fork: parent tid=21007 pid=21007 -> child tid=21008 pid=21008
fork: parent tid=21007 pid=21007 -> child tid=21009 pid=21009
fork: parent tid=21007 pid=21007 -> child tid=21010 pid=21010
fork: parent tid=21007 pid=21007 -> child tid=21011 pid=21011
exec: tid=21010 pid=21010
exec: tid=21008 pid=21008
exec: tid=21011 pid=21011
exec: tid=21009 pid=21009
exit: tid=21008 pid=21008 exit_code=0
fork: parent tid=21010 pid=21010 -> child tid=21012 pid=21012
exit: tid=21009 pid=21009 exit_code=0
exec: tid=21012 pid=21012
exit: tid=21012 pid=21012 exit_code=0
exit: tid=21010 pid=21010 exit_code=0
exit: tid=21011 pid=21011 exit_code=0
exit: tid=21007 pid=21007 exit_code=0
您需要过滤您感兴趣的特定 pid,但您可以在第 107 行的 switch 语句中轻松完成此操作。
出于保存目的:
#include <sys/socket.h>
#include <linux/netlink.h>
#include <linux/connector.h>
#include <linux/cn_proc.h>
#include <signal.h>
#include <errno.h>
#include <stdbool.h>
#include <unistd.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
/*
* connect to netlink
* returns netlink socket, or -1 on error
*/
static int nl_connect()
{
int rc;
int nl_sock;
struct sockaddr_nl sa_nl;
nl_sock = socket(PF_NETLINK, SOCK_DGRAM, NETLINK_CONNECTOR);
if (nl_sock == -1) {
perror("socket");
return -1;
}
sa_nl.nl_family = AF_NETLINK;
sa_nl.nl_groups = CN_IDX_PROC;
sa_nl.nl_pid = getpid();
rc = bind(nl_sock, (struct sockaddr *)&sa_nl, sizeof(sa_nl));
if (rc == -1) {
perror("bind");
close(nl_sock);
return -1;
}
return nl_sock;
}
/*
* subscribe on proc events (process notifications)
*/
static int set_proc_ev_listen(int nl_sock, bool enable)
{
int rc;
struct __attribute__ ((aligned(NLMSG_ALIGNTO))) {
struct nlmsghdr nl_hdr;
struct __attribute__ ((__packed__)) {
struct cn_msg cn_msg;
enum proc_cn_mcast_op cn_mcast;
};
} nlcn_msg;
memset(&nlcn_msg, 0, sizeof(nlcn_msg));
nlcn_msg.nl_hdr.nlmsg_len = sizeof(nlcn_msg);
nlcn_msg.nl_hdr.nlmsg_pid = getpid();
nlcn_msg.nl_hdr.nlmsg_type = NLMSG_DONE;
nlcn_msg.cn_msg.id.idx = CN_IDX_PROC;
nlcn_msg.cn_msg.id.val = CN_VAL_PROC;
nlcn_msg.cn_msg.len = sizeof(enum proc_cn_mcast_op);
nlcn_msg.cn_mcast = enable ? PROC_CN_MCAST_LISTEN : PROC_CN_MCAST_IGNORE;
rc = send(nl_sock, &nlcn_msg, sizeof(nlcn_msg), 0);
if (rc == -1) {
perror("netlink send");
return -1;
}
return 0;
}
/*
* handle a single process event
*/
static volatile bool need_exit = false;
static int handle_proc_ev(int nl_sock)
{
int rc;
struct __attribute__ ((aligned(NLMSG_ALIGNTO))) {
struct nlmsghdr nl_hdr;
struct __attribute__ ((__packed__)) {
struct cn_msg cn_msg;
struct proc_event proc_ev;
};
} nlcn_msg;
while (!need_exit) {
rc = recv(nl_sock, &nlcn_msg, sizeof(nlcn_msg), 0);
if (rc == 0) {
/* shutdown? */
return 0;
} else if (rc == -1) {
if (errno == EINTR) continue;
perror("netlink recv");
return -1;
}
switch (nlcn_msg.proc_ev.what) {
case PROC_EVENT_NONE:
printf("set mcast listen ok\n");
break;
case PROC_EVENT_FORK:
printf("fork: parent tid=%d pid=%d -> child tid=%d pid=%d\n",
nlcn_msg.proc_ev.event_data.fork.parent_pid,
nlcn_msg.proc_ev.event_data.fork.parent_tgid,
nlcn_msg.proc_ev.event_data.fork.child_pid,
nlcn_msg.proc_ev.event_data.fork.child_tgid);
break;
case PROC_EVENT_EXEC:
printf("exec: tid=%d pid=%d\n",
nlcn_msg.proc_ev.event_data.exec.process_pid,
nlcn_msg.proc_ev.event_data.exec.process_tgid);
break;
case PROC_EVENT_UID:
printf("uid change: tid=%d pid=%d from %d to %d\n",
nlcn_msg.proc_ev.event_data.id.process_pid,
nlcn_msg.proc_ev.event_data.id.process_tgid,
nlcn_msg.proc_ev.event_data.id.r.ruid,
nlcn_msg.proc_ev.event_data.id.e.euid);
break;
case PROC_EVENT_GID:
printf("gid change: tid=%d pid=%d from %d to %d\n",
nlcn_msg.proc_ev.event_data.id.process_pid,
nlcn_msg.proc_ev.event_data.id.process_tgid,
nlcn_msg.proc_ev.event_data.id.r.rgid,
nlcn_msg.proc_ev.event_data.id.e.egid);
break;
case PROC_EVENT_EXIT:
printf("exit: tid=%d pid=%d exit_code=%d\n",
nlcn_msg.proc_ev.event_data.exit.process_pid,
nlcn_msg.proc_ev.event_data.exit.process_tgid,
nlcn_msg.proc_ev.event_data.exit.exit_code);
break;
default:
printf("unhandled proc event\n");
break;
}
}
return 0;
}
static void on_sigint(int unused)
{
need_exit = true;
}
int main(int argc, const char *argv[])
{
int nl_sock;
int rc = EXIT_SUCCESS;
signal(SIGINT, &on_sigint);
siginterrupt(SIGINT, true);
nl_sock = nl_connect();
if (nl_sock == -1)
exit(EXIT_FAILURE);
rc = set_proc_ev_listen(nl_sock, true);
if (rc == -1) {
rc = EXIT_FAILURE;
goto out;
}
rc = handle_proc_ev(nl_sock);
if (rc == -1) {
rc = EXIT_FAILURE;
goto out;
}
set_proc_ev_listen(nl_sock, false);
out:
close(nl_sock);
exit(rc);
}
(gcc -o proc proc.c)
还有一些关于netlink的信息:
摘录: http ://www.linuxjournal.com/article/7356
Netlink 是异步的,因为与任何其他套接字 API 一样,它提供了一个套接字队列来平滑消息的突发。发送 netlink 消息的系统调用将消息排入接收者的 netlink 队列,然后调用接收者的接收处理程序。在接收处理程序的上下文中,接收者可以决定是立即处理消息还是将消息留在队列中,稍后在不同的上下文中处理它。与 netlink 不同,系统调用需要同步处理。因此,如果我们使用系统调用将消息从用户空间传递到内核,如果处理该消息的时间较长,可能会影响内核调度粒度。
还有最近发布的关于 nltrace 的有趣公告,您可能也会觉得有趣! http://lists.infradead.org/pipermail/libnl/2013-April/000993.html
很少有工具可以在进程运行时收集有关进程的信息。
我建议你使用 perf 和 systemTap。
https://perf.wiki.kernel.org/index.php/Main_Page
http://sourceware.org/systemtap/SystemTap_Beginners_Guide/index.html
使用 procps 库中的“pidof”系统命令。非常简单易用。如果它返回一些东西,那么进程正在运行,反之亦然。