我正在使用 python、scipy、numpy 等。
我想根据像素到图像质心的距离来计算灰度图像强度值的直方图。以下解决方案有效,但速度很慢:
import matplotlib.pyplot as plt
from scipy import ndimage
import numpy as np
import math
# img is a 2-dimensionsl numpy array
img = np.random.rand(300, 300)
# center of mass of the pixels is easy to get
centerOfMass = np.array(list(ndimage.measurements.center_of_mass(img)))
# declare histogram buckets
histogram = np.zeros(100)
# declare histogram range, which is half the diagonal length of the image, enough in this case.
maxDist = len(img)/math.sqrt(2.0)
# size of the bucket might be less than the width of a pixel, which is fine.
bucketSize = maxDist/len(histogram)
# fill the histogram buckets
for i in range(len(img)):
for j in range(len(img[i])):
dist = np.linalg.norm(centerOfMass - np.array([i,j]))
if(dist/bucketSize < len(histogram)):
histogram[int(dist/bucketSize)] += img[i, j]
# plot the img array
plt.subplot(121)
imgplot = plt.imshow(img)
imgplot.set_cmap('hot')
plt.colorbar()
plt.draw()
# plot the histogram
plt.subplot(122)
plt.plot(histogram)
plt.draw()
plt.show()
正如我之前所说,这可行,但速度很慢,因为您不应该在 numpy 中以这种方式对数组进行双循环。有没有更有效的方法来做同样的事情?我假设我需要对所有数组元素应用一些函数,但我也需要索引坐标。我怎样才能做到这一点?目前,一张 1kx1k 的图像需要几秒钟,这非常慢。