扎实的问题。我一直在拉我的头发,直到我发现这个描述了一个有趣的“特征” plyr
。所以这个解决方案使用了 ggplot、plyr、reshape2——希望是对 R 的一个很好的介绍。如果你需要通过天数添加剪辑,你也可以通过在 ddply() 中添加一个变量来做到这一点。
library(plyr)
library(reshape2)
library(ggplot2)
Hs <- read.table(
header=TRUE, text='
dates times gaps
1 2013-06-10 15:40:02.654168 1.426180
2 2013-06-10 15:40:18.936882 2.246462
3 2013-06-10 15:40:35.215668 3.227132
4 2013-06-10 15:40:48.328785 1.331284
5 2013-06-10 15:40:53.809485 1.294128
6 2013-06-10 15:41:04.027745 2.292671
7 2013-06-10 16:41:25.876519 1.293501
8 2013-06-10 16:41:42.929280 1.342166
9 2013-06-10 16:42:11.700626 3.203901
10 2013-06-10 16:42:23.059550 1.304467')
Hs$dates <- paste(Hs$date, Hs$times, sep = " ")
Hs$dates <- strptime(Hs$date, "%Y-%m-%d %H:%M:%S")
class(Hs$dates) # "POSIXlt" "POSIXt"
Hs$h1 <- Hs$dates$hour
Hs$dates <- as.POSIXct(strptime(Hs$date, "%Y-%m-%d %H:%M:%S"))
class(Hs$dates) # "POSIXct" "POSIXt"
library(ggplot2)
ggplot(Hs, aes(factor(h1), gaps)) +
geom_boxplot(fill="white", colour="darkgreen") # easy way! Traditional boxplot.
ggplot(Hs, aes(factor(h1), gaps)) + geom_boxplot() +
stat_boxplot(coef = 1.7, fill="white", colour="darkgreen")
我不知道添加“coef = 1.7”是否适合您 - 如果不继续通过汇总表进一步创建值
cuts <- c(.03, .5, .97, 1)
x <- ddply(Hs, .(h1), function (x)
{summarise(x, y = quantile(x$gaps, cuts))})
x$cuts <- cuts
x <- dcast(x, h1 ~ cuts, value.var = "y")
x.melt <- melt(x, id.vars = "h1")
这是您要求的线条加上另一个方框图,只是为了好玩。
ggplot(x.melt, aes(x = h1, y = value, color = variable)) + geom_point(size = 5) +
geom_line() + scale_colour_brewer(palette="RdYlBu") + xlab("hours")
ggplot(x, aes(factor(h1), ymin = 0, lower = `0.03`, middle = `0.5`,
upper = `0.97`, ymax = `1`)) +
geom_boxplot(stat = "identity", fill="white", colour="darkgreen")
希望这可以帮助。