我面临以下引理的问题,我认为这应该是正确的。我可以通过小步骤使证明工作到某个点,但是我还没有找到证明整个引理的方法。
lemma abc:
fixes A :: "'a::comm_ring_1^'n^'n" and l :: 'n and c :: 'a
shows "(χ i j. if i = l then c * (transpose A $ i $ j) else (transpose A $ i $ j)) =
(χ i j. if i = l then c * (A $ j $ i) else (A $ j $ i))"
proof -
(* here is my draft *)
have th1: "(χ i j. transpose A $ i $ j) = (χ i j. A $ j $ i)"
by (simp add: det_transpose transpose_def)
have "(χ i j. if i = l then (transpose A $ i $ j) else (transpose A $ i $ j)) =
(χ i j. A $ j $ i)" by (metis column_def row_def row_transpose)
show ?thesis sorry
qed