我正在尝试使用 Ramanujan 的公式之一在 Python 上以任意精度计算 pi:http ://en.wikipedia.org/wiki/Approximations_of_%CF%80#20th_century 。它基本上需要大量的阶乘和高精度的浮点数除法。
我正在使用多个线程来划分无限级数计算,方法是为每个线程提供在除以线程数时具有一定模数的所有成员。所以如果你有 3 个线程,总和应该像这样划分线程 1 ---> 1, 4, 7... 成员线程 2 ---->2, 5, 8... 线程 3 ---- >3、6、9...
到目前为止,这是我的代码:
from decimal import *
from math import sqrt, ceil
from time import clock
from threading import *
import argparse
memoizedFactorials = []
memoizedFactorials.append( 1 )
memoizedFactorials.append( 1 )
class Accumulator:
def __init__( self ):
self._sum = Decimal( 0 )
def accumulate( self, decimal ):
self._sum += decimal
def sum( self ):
return self._sum
def factorial( k ):
if k < 2: return 1
elif len(memoizedFactorials) <= k:
product = memoizedFactorials[ - 1 ] #last element
for i in range ( len(memoizedFactorials), k+1 ):
product *= i;
memoizedFactorials.append(product)
return memoizedFactorials[ k ]
class Worker(Thread):
def __init__( self, startIndex, step, precision, accumulator ):
Thread.__init__( self, name = ("Thread - {0}".format( startIndex ) ) )
self._startIndex = startIndex
self._step = step
self._precision = precision
self._accumulator = accumulator
def run( self ):
sum = Decimal( 0 )
result = Decimal( 1 )
zero = Decimal( 0 )
delta = Decimal(1)/( Decimal(10)**self._precision + 1 )
#print "Delta - {0}".format( delta )
i = self._startIndex
while( result - zero > delta ):
numerator = Decimal(factorial(4 * i)*(1103 + 26390 * i))
denominator = Decimal((factorial(i)**4)*(396**(4*i)))
result = numerator / denominator
print "Thread - {2} --- Iteration - {0:3} --->{1:3}".format( i, result, self._startIndex )
sum += result
i += self._step
self._accumulator.accumulate( sum )
print
def main( args ):
numberOfDigits = args.numberOfDigits;
getcontext().prec = numberOfDigits + 8
zero = Decimal(1) / Decimal( 10**( numberOfDigits + 1 ) )
start = clock()
accumulator = Accumulator()
threadsCount = args.numberOfThreads;
threadPool = []
for i in range(0, threadsCount ):
worker = Worker( i, threadsCount, numberOfDigits, accumulator )
worker.start()
threadPool.append( worker )
for worker in threadPool:
worker.join()
sum = accumulator.sum();
rootOfTwo = Decimal(2).sqrt()
result = Decimal( 9801 ) / ( Decimal( 2 ) * rootOfTwo * sum )
end = clock();
delta = end - start;
print result;
print ("Took it {0} second to finish".format( delta ) )
#testing the results
#realPiFile = open("pi.txt");
#myPi = str(result)
#realPi = realPiFile.read( len(myPi) - 1 )
#if ( myPi[:-1] != realPi ):
# print "Answer not correct!"
# print "My pi - {0}".format(myPi)
# print "Real pi - {0}".format(realPi)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = 'Calculate Pi at with arbitrary precision')
parser.add_argument('-p', dest = 'numberOfDigits', default=20, type = int, help ='Number of digits in pi ')
parser.add_argument('-t', '--tasks', dest = 'numberOfThreads', default=1, type = int, help ='Number of tasks( threads )')
parser.add_argument('-o', dest = 'outputFileName', type = str, help ='Connect to VCS testing servers')
parser.add_argument('-q', '--quet', dest = 'quetMode' , action='store_true', help ='Run in quet mode')
args = parser.parse_args()
print args
main(args)
a = raw_input("Press any key to continue...")
让我担心的是,在使用多个线程时,我的时间加速非常小或没有。例如 1000 位 pi:1 线程 --> 0.68 秒 2 线程 --> 0.74 秒 4 线程 --> 0.75 秒 10 线程 --> 0.96 秒
你对如何减少时间有什么想法吗?我在任务管理器上看到,当使用四个线程时,我的两个内核都 100% 参与其中。然而时间似乎是一样的。
PS:这是一个家庭作业,所以我不能使用其他公式。PSS:我正在使用 python 2.7
谢谢:)